已知函數(shù)f(x)=
4x
3x2+3
,x∈[0,2]

(1)求f(x)的值域;
(2)設(shè)a≠0,函數(shù)g(x)=
1
3
ax3-a2x
,x∈[0,2].若對任意x1∈[0,2],總存在x2∈[0,2],使f(x1)-g(x2)=0.求實數(shù)a的取值范圍.
(1)對函數(shù)f(x)求導(dǎo),f′(x)=
4
3
1-x2
(x2+1)2

令f'(x)=0得x=1或x=-1.
當(dāng)x∈(0,1)時,f'(x)>0,f(x)在(0,1)上單調(diào)遞增;
當(dāng)x∈(1,2)時,f'(x)<0,f(x)在(1,2)上單調(diào)遞減.
f(0)=0,f(1)=
2
3
,f(2)=
8
15
,
所以當(dāng)x∈[0,2],f(x)的值域是[0,
2
3
]
;
(2)設(shè)函數(shù)g(x)在[0,2]上的值域是A.
∵對任意x1∈[0,2],總存在x0∈[0,2],使f(x1)-g(x0)=0,
[0,
2
3
]⊆A

對函數(shù)g(x)求導(dǎo),g'(x)=ax2-a2
①當(dāng)a<0時,若x∈(0,2),g'(x)<0,所以函數(shù)g(x)在(0,2)上單調(diào)遞減.
g(0)=0,g(2)=
8
3
a-2a2<0
,
∴當(dāng)x∈[0,2]時,不滿足[0,
2
3
]⊆A
;
②當(dāng)a>0時,g′(x)=a(x-
a
)(x+
a
)

令g'(x)=0,得x=
a
x=-
a
(舍去).
(i)當(dāng)x∈[0,2],0<
a
<2
時,列表:

g(0)=0,g(
a
)<0
,
又∵[0,
2
3
]⊆A
,∴g(2)=
8
3
a-2a2
2
3
,解得
1
3
≤a≤1

(ii)當(dāng)x∈(0,2),
a
≥2
時,g'(x)<0,∴函數(shù)在(0,2)上單調(diào)遞減,
∵g(0)=0,∴g(2)=
8
3
a-2a2<0
∴當(dāng)x∈[0,2]時,不滿足[0,
2
3
]⊆A

綜上,實數(shù)a的取值范圍是[
1
3
,1]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a∈R)

(Ⅰ)當(dāng)a=-1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a≤
1
2
時,討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,x=0是極值點的函數(shù)是( 。
A.y=-x3B.y=cos2xC.y=tanx-xD.y=
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=x3+x2,曲線y=f(x)在點(2,f(2))處的切線方程______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)點A(x1,f(x1)),B(x2,f(x2)),T(x0,f(x0))在函數(shù)f(x)=x3-ax(a>0)的圖象上,其中x1,x2是f(x)的兩個極值點,x0(x0≠0)是f(x)的一個零點,若函數(shù)f(x)的圖象在T處的切線與直線AB垂直,則a=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x2+ax+1-lnx.
(Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)既有極大值又有極小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線y=x2上一點P處的切線與直線2x-y+1=0平行,則點P的坐標(biāo)為( 。
A.(-1,1)B.(1,1)C.(2,4)D.(3,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),當(dāng)x=1時,f(x)取得極值-2.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[-3,3]時,f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,最小值為的是(        )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案