【題目】甲、乙兩人進行圍棋比賽,記事件A為“甲獲得比賽勝利或者平局”,事件B為“乙獲得比賽的勝利或者平局”,已知.

(1)求甲獲得比賽勝利的概率;

(2)求甲、乙兩人獲得平局的概率.

【答案】(1)0.6;(2)0.1.

【解析】

由題意,甲、乙兩人進行圍棋比賽,所有的可能基本事件有:甲獲得勝利、乙獲得勝利、甲乙平局,它們互為互斥事件,根據(jù)互斥事件的概率公式解答。

甲、乙兩人進行圍棋比賽,所有的可能基本事件有:甲獲得勝利、乙獲得勝利、甲乙平局,分別記做事件 、、,且 、、為互斥,則“甲獲得比賽勝利或者平局”為事件 、的和事件,“乙獲得比賽的勝利或者平局”為、的和事件,由互斥事件的和事件概率公式得:

,,

故甲獲得比賽勝利的概率為;

甲、乙兩人獲得平局的概率為;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽數(shù)之間的關系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了明天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“君不小于25”的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5填中的另三天的數(shù)據(jù),求出關于的線性回歸方程,.

(參考公式:,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知點為拋物線的焦點,點在拋物線上,且

)求拋物線的方程;

)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱柱中,平面平面,點為棱的中點,點為線段上的動點.

1)求證:;

2)若直線與平面所成角為,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的圖象在點處的切線方程為,求實數(shù)a,b的值;

2)若,求的單調(diào)減區(qū)間;

3)對一切實數(shù),求的極小值函數(shù),并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校要從甲、乙兩名同學中選擇一人參加該市組織的數(shù)學競賽,已知甲、乙兩名同學最近7次模擬競賽的數(shù)學成績(滿分100分)如下:

:79,81,83,8485,90,93;

乙:75,78,82,84,90,92,94.

1)完成答題卡中的莖葉圖;

2)分別計算甲、乙兩名同學最近7次模擬競賽成績的平均數(shù)與方差,并由此判斷該校應選擇哪位同學參加該市組織的數(shù)學競賽.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知10件不同產(chǎn)品中有3件是次品,現(xiàn)對它們一一取出(不放回)進行檢測,直至取出所有次品為止.

(1)若恰在第5次取到第一件次品,第10次才取到最后一件次品,則這樣的不同測試方法數(shù)有多少?

(2)若恰在第6次取到最后一件次品,則這樣的不同測試方法數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)絡看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機器故障進行查找詢問、診斷治療、檢查修復的一種新興的看病方式.因此,實地看病與網(wǎng)絡看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機構調(diào)研了患者對網(wǎng)絡看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡看病,實地看病兩種方式進行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:

1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡看病、實地看病那種方式的滿意度更高?并說明理由;

2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:

滿意

不滿意

總計

網(wǎng)絡看病

實地看病

總計

并根據(jù)列聯(lián)表判斷能否有的把握認為患者看病滿意度與看病方式有關?

3)從網(wǎng)絡看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解關于的不等式

查看答案和解析>>

同步練習冊答案