【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB.
(1)證明:A=2B
(2)若△ABC的面積S= ,求角A的大。

【答案】
(1)

證明:∵b+c=2acosB,

∴sinB+sinC=2sinAcosB,

∴sinB+sin(A+B)=2sinAcosB

∴sinB+sinAcosB+cosAsinB=2sinAcosB

∴sinB=2=sinAcosB﹣cosAsinB=sin(A﹣B)

∵A,B是三角形中的角,

∴B=A﹣B,

∴A=2B


(2)

解:∵△ABC的面積S= ,

bcsinA=

∴2bcsinA=a2,

∴2sinBsinC=sinA=sin2B,

∴sinC=cosB,

∴B+C=90°,

∴A=90°


【解析】(1)利用正弦定理,結(jié)合和角的正弦公式,即可證明A=2B(2)若△ABC的面積S= ,則 bcsinA= ,結(jié)合正弦定理、二倍角公式,即可求角A的大。绢}考查了正弦定理,解三角形,考查三角形面積的計算,考查二倍角公式的運用,屬于中檔題.
【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0),傾斜角為45°的直線與橢圓相交于M、N兩點,且線段MN的中點為(﹣1, ).過橢圓E內(nèi)一點P(1, )的兩條直線分別與橢圓交于點A、C和B、D,且滿足 ,其中λ為實數(shù).當(dāng)直線AP平行于x軸時,對應(yīng)的λ=

(1)求橢圓E的方程;
(2)當(dāng)λ變化時,kAB是否為定值?若是,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙十一已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年雙十一的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費金額(百元)的頻率分布直方圖如圖所示:

1)求網(wǎng)民消費金額的平均值和中位數(shù);

(2)把下表中空格里的數(shù)填上,能否有90%的把握認(rèn)為網(wǎng)購消費與性別有關(guān);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=aR).

(Ⅰ)若f(1)=2,求函數(shù)y=fx)-2x[,2]上的值域;

(Ⅱ)當(dāng)a∈(0,)時,試判斷fx)在(0,1]上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在(0,+∞)上的增函數(shù),且滿足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是奇函數(shù),且滿足,當(dāng)時,,則內(nèi)是( )

A. 單調(diào)增函數(shù),且 B. 單調(diào)減函數(shù),且

C. 單調(diào)增函數(shù),且 D. 單調(diào)減函數(shù),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[1,2]上是減函數(shù),若α,β是銳角三角形的兩個內(nèi)角,則( 。

A. f B. f

C. f D. f

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面,四邊形為矩形,四邊形為直角梯形,,ABCD,

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案