下列命題中的真命題是(  )
A、對(duì)于實(shí)數(shù)a、b、c,若a>b,則ac2>bc2
B、x2>1是x>1的充分而不必要條件
C、命題“?x∈R,cosx>0”的否定是“?x∈R,cosx>0”
D、?α,β∈R,使得sin(α+β)=sinα+sinβ成立
考點(diǎn):命題的真假判斷與應(yīng)用
專(zhuān)題:簡(jiǎn)易邏輯
分析:取c=0判斷A;由充分條件、必要條件的概念判斷B;直接寫(xiě)出命題的否定判斷C;舉例說(shuō)明D正確.
解答: 解:對(duì)于A,當(dāng)c=0時(shí)命題錯(cuò)誤;
對(duì)于B,由x2>1,得x<-1或x>1,由x>1,得x2>1,
∴x2>1是x>1的必要而不充分條件,命題錯(cuò)誤;
對(duì)于C,命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”,命題錯(cuò)誤;
對(duì)于D,當(dāng)α=0,β=π時(shí)命題成立,命題為真命題.
故選:D.
點(diǎn)評(píng):本題考查了命題的真假判斷與應(yīng)用,考查了充分條件、必要條件的判斷方法,考查了命題的否定,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程16x+(3+a)•4x+1=0有正數(shù)解,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x)對(duì)任意的實(shí)數(shù)x都有f(x)=-f(x+
3
2
),且f(-1)=1,f(0)=-2,則f(1)+f(2)+f(3)+…+f(2011)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinx,cosx),
b
=(cosφ,sinφ)(|φ|<
π
2
).函數(shù)f(x)=
a
b
 且f(
π
3
-x)=f(x).
(1)求f(x)的解析式及單調(diào)遞增區(qū)間:
(2)將f(x)的圖象向右平移
π
3
單位得g(x)的圖象,若g(x)+1≤ax+cosx在x∈[0,
π
4
]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)用輾轉(zhuǎn)相除法求225,135兩個(gè)數(shù)的最大公約數(shù);
(2)用更相減損術(shù)求72與168的最大公約數(shù);
(3)11011(2)轉(zhuǎn)化成十進(jìn)制.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3x2+a(a∈R)
①若f(x)的圖象在(1,f(1))處的切線經(jīng)過(guò)點(diǎn)(0,2),則a=
 

②若對(duì)任意x1∈[0,2],都存在x2∈[2,3]使得f(x1)+f(x2)≤2,則實(shí)數(shù)a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用輾轉(zhuǎn)相除法或更相減損術(shù)求得4557與5115的最大公約數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的解析式.
(1)已知f(1-x)=2x2-x+1,求f(x);
(2)已知f(x-
1
x
)=x2+
1
x2
,求f(x);
(3)已知一次函數(shù)f(x)滿足f(f(x))=4x-1,求f(x);
(4)定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊與單位圓的交點(diǎn)坐標(biāo)為(-
1
2
,
3
2
),則cos2α=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案