10.已知關(guān)于x的方程2x2-($\sqrt{3}$+1)x+2m=0的兩根為sinθ和cosθ(θ∈(0,π)),求:
(1)m的值.
(2)$\frac{sinθ}{1-cotθ}+\frac{cosθ}{1-tanθ}$的值(其中cotθ=$\frac{1}{tanθ}$).
(3)方程的兩根及此時(shí)θ的值.

分析 (1)由根與系數(shù)的關(guān)系可知,sinθ+cosθ=$\frac{\sqrt{3}+1}{2}$,sinθ•cosθ=m.聯(lián)立方程即可得解m的值.
(2)將所求切化弦,利用(1)即可計(jì)算得解.
(3)由m=$\frac{\sqrt{3}}{4}$,可得一元二次方程,解得方程的兩根,根據(jù)范圍θ∈(0,π),即可求得θ的值.

解答 解:(1)由根與系數(shù)的關(guān)系可知,
sinθ+cosθ=$\frac{\sqrt{3}+1}{2}$,①
sinθ•cosθ=m.②
將①式平方得1+2sinθ•cosθ=$\frac{2+\sqrt{3}}{2}$,
所以sinθ•cosθ=$\frac{\sqrt{3}}{4}$,
代入②得m=$\frac{\sqrt{3}}{4}$.
(2)$\frac{sinθ}{1-cotθ}+\frac{cosθ}{1-tanθ}$=$\frac{si{n}^{2}θ}{sinθ-cosθ}$+$\frac{co{s}^{2}θ}{cosθ-sinθ}$=$\frac{si{n}^{2}θ-co{s}^{2}θ}{sinθ-cosθ}$=sinθ+cosθ=$\frac{\sqrt{3}+1}{2}$.
(3)因?yàn)橐亚蟮胢=$\frac{\sqrt{3}}{4}$,
所以原方程化為2x2-($\sqrt{3}$+1)x+$\frac{\sqrt{3}}{2}$=0,
解得x1=$\frac{\sqrt{3}}{2}$,x2=$\frac{1}{2}$.
所以$\left\{\begin{array}{l}{sinθ=\frac{\sqrt{3}}{2}}\\{cosθ=\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{sinθ=\frac{1}{2}}\\{cosθ=\frac{\sqrt{3}}{2}}\end{array}\right.$,
又因?yàn)棣取剩?,π),所以θ=$\frac{π}{3}$或$\frac{π}{6}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,一元二次方程的解法,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x|a-x|+2x.
(1)當(dāng)a=4時(shí),寫出函數(shù)f(x)的單調(diào)遞增區(qū)間(不需要過程);
(2)若函數(shù)f(x)在R上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若存在a∈[-2,4],使得函數(shù)y=f(x)-at有三個(gè)零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)在x=x0處導(dǎo)數(shù)存在,若p:x=x0是f(x)的極值點(diǎn),;q:f′(x0)=0,則p是q的( 。l件.
A.充分且必要條件
B.充分不必要條件
C.必要不充分條件
D.既不是的充分條件也不是的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求y=$\sqrt{1+x}$+2$\sqrt{1-x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知扇形的半徑為2cm,扇形圓心角θ的弧度數(shù)是2,則扇形的弧長為( 。
A.2cmB.4cmC.6cmD.8cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知sinαcosα=$\frac{60}{169}$,π<α<$\frac{5π}{4}$,那么sinα-cosα=$\frac{7}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=kx+y的最大值為13,則實(shí)數(shù)k=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,S1=2,Sn=6,且Sn-Sn-2=3n(n≥3),則數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}\frac{3n}{2}+\frac{1}{2},n為奇數(shù)\\ \frac{3n}{2}+1,n為偶數(shù)\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=f(x)的一個(gè)減區(qū)間是(2,6),則可以斷定函數(shù)y=f(2-x)的( 。
A.一個(gè)減區(qū)間是(4,8)B.一個(gè)減區(qū)間是(0,4)
C.一個(gè)增區(qū)間是(-4,0)D.一個(gè)增區(qū)間是(0,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案