2.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=kx+y的最大值為13,則實(shí)數(shù)k=$\frac{9}{4}$.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=kx+y得y=-kx+z,∴直線的截距最大,對(duì)應(yīng)的z也取得最大值,
即平面區(qū)域在直線y=-kx+z的下方,且-k<0
平移直線y=-kx+z,由圖象可知當(dāng)直線y=-kx+z經(jīng)過點(diǎn)A時(shí),直線y=-kx+z的截距最大,此時(shí)z最大為13,
即kx+y=13
由$\left\{\begin{array}{l}{x-2y+4=0}\\{2x-y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,
即A(4,4),
此時(shí)4k+4=13,解得k=$\frac{9}{4}$,
故答案為:$\frac{9}{4}$.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某田徑隊(duì)有男運(yùn)動(dòng)員42人,女運(yùn)動(dòng)員30人,用分層抽樣的方法從全體運(yùn)動(dòng)員中抽取一個(gè)容量為n的樣本.若抽到的女運(yùn)動(dòng)員有5人,則n的值為(  )
A.5B.7C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=$\sqrt{3}$,$\overrightarrow{OA}•\overrightarrow{OB}$=0,點(diǎn)C在線段AB上,且∠AOC=30°,設(shè)$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),則m-n等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知關(guān)于x的方程2x2-($\sqrt{3}$+1)x+2m=0的兩根為sinθ和cosθ(θ∈(0,π)),求:
(1)m的值.
(2)$\frac{sinθ}{1-cotθ}+\frac{cosθ}{1-tanθ}$的值(其中cotθ=$\frac{1}{tanθ}$).
(3)方程的兩根及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U={2,3,5,7,9},A={2,|a-5|,7},CUA={5,9},則a的值為(  )
A.2B.8C.2或8D.-2或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)若$\overrightarrow{a}$=(1,0),$\overrightarrow$=(-1,1),$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow$.求|$\overrightarrow{c}$|;
(2)若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn=2n2-3n(n∈N*),則a7-a2=( 。
A.20B.15C.10D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知多項(xiàng)式f(x)=2x7+x6+x4+x2+1,當(dāng)x=2時(shí)的函數(shù)值時(shí)用秦九韶算法計(jì)算V2的值是( 。
A.1B.5C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求函數(shù)y=$\frac{sinx+1}{cosx-2}$的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案