17.求過點(diǎn)P(8,-2)且與直線x+y+1=0垂直的直線方程.

分析 根據(jù)已知,與直線x+y+1=0垂直的直線方程的斜率k=1,從而可求出直線方程為x-y-10=0

解答 解:∵與直線x+y+1=0垂直的直線方程的斜率k=1,
∴過點(diǎn)P(8,-2)且與直線x+y+1=0垂直的直線方程:y+2=x-8,整理,得x-y-10=0.

點(diǎn)評(píng) 本題考查直線方程的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若存在過點(diǎn)(1,0)的直線與曲線y=x3和y=ax2+$\frac{15}{4}$x-9都相切,則a的值為(  )
A.-1或-$\frac{25}{64}$B.-$\frac{23}{38}$C.-2D.-3或-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.等比數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則${a}_{1}^{2}$+${a}_{2}^{2}$+${a}_{3}^{2}$+…+${a}_{n}^{2}$=$\frac{1}{3}({4}^{n}-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足an+1-2an=0,且a1=3.
(1)寫出數(shù)列的通項(xiàng)公式;
(2)48是數(shù)列中的項(xiàng)嗎?若是,是第幾項(xiàng),若不是,說明理由;
(3)若bn=2an-1,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)的定義域?yàn)椋?,4),求f(log2|x-3|)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知正整數(shù)a,b,c(a>b>c)為△ABC的三邊長,且{$\frac{{2}^{a}}{15}$}={$\frac{{2}^}{15}$}={$\frac{{2}^{c}}{15}$},求a+b+c的最小值,其中{m}表示m的小數(shù)部分,即{m}=m-[m]([m]表示不超過m的最大整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,正方體ABCD-A1B1C1D1的棱長為4,動(dòng)點(diǎn)E,F(xiàn)在棱A1B1上,動(dòng)點(diǎn)P,Q分別在棱AB,CD上,若EF=2,現(xiàn)有以下五種說法:
①四面體PEFQ的體積與P,Q點(diǎn)的位置無關(guān)
②△EFQ的面積為定值
③四面體PEFQ的體積與點(diǎn)P的位置有關(guān),與點(diǎn)Q的位置無關(guān)
④四面體PEFQ的體積為正方體體積的$\frac{1}{12}$
⑤點(diǎn)P到平面EFQ的距離隨著P的變化而變化
其中正確的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對(duì)任意實(shí)數(shù)a,b,c,d,命題:
①若a>b,c≠0,則ac>bc;
②若a>b,則ac2>bc2
③若ac2>bc2,則a>b.
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)點(diǎn)A在-150°角的終邊上,|$\overrightarrow{OA}$|=2$\sqrt{2}$(O是坐標(biāo)原點(diǎn)),則向量$\overrightarrow{OA}$的坐標(biāo)為( 。
A.($\sqrt{6}$,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{6}$)C.(-$\sqrt{2}$,-$\sqrt{6}$)D.(-$\sqrt{6}$,-$\sqrt{2}$)

查看答案和解析>>

同步練習(xí)冊答案