(本題滿分12分)如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD,ED=1,EFBDEFBD
(1)求證:BF∥平面ACE;(2)求二面角BAFC的大;
(3)求點(diǎn)F到平面ACE的距離.
(Ⅰ)見解析  (Ⅱ)   (Ⅲ)
1)記AC與BD的交點(diǎn)為O,連接EO,則可證BF∥EO,又面ACE,面ACE,故BF∥平面ACE;                                                       (3分)
解:(2)過點(diǎn)O作OG⊥AF于點(diǎn)G,連接GB,則可證∠OGB為二面角B-AF-C的平面角.在Rt△FOA中,可求得OG=,又OB=,故
,即二面角B-AF-C的大小為;   (8分)


(第19題答案圖)

 
(3)點(diǎn)F到平面ACE的距離等于點(diǎn)B到

平面ACE的距離,也等于點(diǎn)D到平面ACE
的距離,該距離就是Rt△EDO斜邊上的高,
.         (12分)
(本題運(yùn)用向量法解答正確,請參照給分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)
如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=
BAD=90°,AB中點(diǎn),FPC中點(diǎn).
(I)求證:PEBC
(II)求二面角CPEA的余弦值;
(III)若四棱錐PABCD的體積為4,求AF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知三棱柱中,側(cè)棱垂直于底面,底面△ABC中點(diǎn)的中點(diǎn)。
(1)求證:
(2)求證:                     
(3)求
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖3,在正三棱柱中,AB=4,,點(diǎn)DBC的中點(diǎn),
點(diǎn)EAC上,且DEE

(Ⅰ)證明:平面平面;
(Ⅱ)求直線AD和平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖甲,直角梯形中,,,點(diǎn)、分別在,上,且,,,現(xiàn)將梯形沿折起,使平面與平面垂直(如圖乙).

(Ⅰ)求證:平面
(Ⅱ)當(dāng)的長為何值時,
二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某幾何體的三視圖如下圖所示,其中左視圖是邊長為2的正三角形,主視圖是矩形且,俯視圖中分別是所在邊的中點(diǎn),設(shè)的中點(diǎn).
(1)求其體積;(2)求證:;
(3)邊上是否存在點(diǎn),使?若不存在,說明理由;若存在,請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,
已知正三棱柱的底面邊長是2,D是側(cè)棱的中點(diǎn),平面ABD和平面的交線為MN.
。á瘢┰囎C明
。á颍┤糁本AD與側(cè)面所成的角為,試求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正方體
,求所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知球的半徑為1,三點(diǎn)都在球面上,且每兩點(diǎn)間的球面距離均為,則球心到平面的距離為         

查看答案和解析>>

同步練習(xí)冊答案