【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.

(1)求an,bn;

(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

【答案】(1)(2)(4n﹣5)2n+5.

【解析】試題分析:(1)根據(jù)Sn與an的關(guān)系求出an,再根據(jù)an=4log2bn+3求;(2)根據(jù)錯(cuò)位相減法求數(shù)列{anbn}的前n項(xiàng)和。

試題解析

(1)當(dāng)n≥2時(shí),

當(dāng)n=1時(shí),a1=S1=3,滿足上式,

故an=4n﹣1,

又∵an=4log2bn+3=4n﹣1,

∴l(xiāng)og2bn= n﹣1

(2)由(1)知,

,①

,②

②-①得

=

=(4n﹣1)2n﹣[3+4(2n﹣2)]

=(4n﹣5)2n+5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(Ⅰ)若是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)令,若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】完成下列進(jìn)位制之間的轉(zhuǎn)化.

(1)10231(4)________(10);

(2)235(7)________(10);

(3)137(10)________(6);

(4)1231(5)________(7);

(5)213(4)________(3);

(6)1010111(2)________(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濱湖區(qū)擬建一主題游戲園,該游戲園為四邊形區(qū)域ABCD,其中三角形區(qū)城ABC為主題活動(dòng)區(qū),其中∠ACB=60°,∠ABC=45°,AB=12 m;AD、CD為游客通道(不考慮寬度),且∠ADC=120°,通道AD、CD圍成三角形區(qū)域ADC為游客休閑中心,供游客休憩.

(1)求AC的長度;
(2)記游客通道AD與CD的長度和為L,求L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年級(jí)舉辦團(tuán)知識(shí)競賽.、、四個(gè)班報(bào)名人數(shù)如下:

班別

人數(shù)

45

60

30

15

年級(jí)在報(bào)名的同學(xué)中按分層抽樣的方式抽取10名同學(xué)參加競賽,每位參加競賽的同學(xué)從10個(gè)關(guān)于團(tuán)知識(shí)的題目中隨機(jī)抽取4個(gè)作答,全部答對(duì)的同學(xué)獲得一份獎(jiǎng)品.

(Ⅰ)求各班參加競賽的人數(shù);

(Ⅱ)若班每位參加競賽的同學(xué)對(duì)每個(gè)題目答對(duì)的概率均為,求班恰好有2位同學(xué)獲得獎(jiǎng)品的概率;

(Ⅲ)若這10個(gè)題目,小張同學(xué)只有2個(gè)答不對(duì),記小張答對(duì)的題目數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)銳角△ABC的三內(nèi)角A、B、C所對(duì)邊的邊長分別為a、b、c,且 a=1,B=2A,則b的取值范圍為(
A.( ,
B.(1,
C.( ,2)
D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a4與a14的等比中項(xiàng)為 ,則2a7+a11的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種水杯,每個(gè)水杯的原材料費(fèi)、加工費(fèi)分別為30元、m(m為常數(shù),且2m3),設(shè)每個(gè)水杯的出廠價(jià)為x(35x41),根據(jù)市場調(diào)查,水杯的日銷售量與ex(e為自然對(duì)數(shù)的底數(shù))成反比例,已知每個(gè)水杯的出廠價(jià)為40元時(shí),日銷售量為10個(gè).

(1)求該工廠的日利潤y()與每個(gè)水杯的出廠價(jià)x()的函數(shù)關(guān)系式;

(2)當(dāng)每個(gè)水杯的出廠價(jià)為多少元時(shí),該工廠的日利潤最大,并求日利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視臺(tái)播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長、廣告播放時(shí)長、收視人次如下表所示:

連續(xù)劇播放時(shí)長(分鐘)

廣告播放時(shí)長分鐘

收視人次

70

5

60

60

5

25

已知電視臺(tái)每周安排的甲、乙連續(xù)劇的總播放時(shí)間不多于600分鐘,廣告的總播放時(shí)間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用,表示每周計(jì)劃播出的甲乙兩套連續(xù)劇的次數(shù)

(1),列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

2問電視臺(tái)每周播出甲、乙兩套連續(xù)劇各多少次,才能使收視人次最多

查看答案和解析>>

同步練習(xí)冊(cè)答案