精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.

(1)求橢圓的標準方程;

(2)設為橢圓的左焦點,直線,為橢圓上任意一點,證明:點的距離是點距離的倍.

【答案】(1);(2)見解析

【解析】

(1)根據焦距及短軸的兩個端點與長軸的一個端點構成正三角形,結合橢圓中的關系,即可求得的值,即可得橢圓方程.

(2)設出點的坐標,根據兩點間距離公式,結合橢圓的方程即可證明.

(1)因為橢圓)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.

所以,解方程組可得

所以橢圓的方程為

(2)證明:設,

因為為橢圓的左焦點,直線,橢圓的方程為

所以,

則點P到直線的距離為

P的距離為

因為

所以原式

所以,即點的距離是點距離的倍.

得證.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數是由曲線確定的.

1)寫出函數,并判斷該函數的奇偶性;

2)求函數的單調區(qū)間并證明其單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數據資料,算得,,,

1)求家庭的月儲蓄對月收入的線性回歸方程;

2)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.

(附:線性回歸方程中,,其中,為樣本平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大數據時代對于現代人的數據分析能力要求越來越高,數據擬合是一種把現有數據通過數學方法來代入某條數式的表示方式,比如,,2,n是平面直角坐標系上的一系列點,用函數來擬合該組數據,盡可能使得函數圖象與點列比較接近.其中一種描述接近程度的指標是函數的擬合誤差,擬合誤差越小越好,定義函數的擬合誤差為:.已知平面直角坐標系上5個點的坐標數據如表:

x

1

3

5

7

9

y

12

4

12

若用一次函數來擬合上述表格中的數據,求該函數的擬合誤差的最小值,并求出此時的函數解析式;

若用二次函數來擬合題干表格中的數據,求

請比較第問中的和第問中的,用哪一個函數擬合題目中給出的數據更好?請至少寫出三條理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在點處取得極值.

(1)求的值;

(2)若有極大值,求上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是橢圓的兩個焦點,是橢圓上一點,當時,有.

1)求橢圓的標準方程;

2)設過橢圓右焦點的動直線與橢圓交于兩點,試問:在鈾上是否存在與不重合的定點,使得恒成立?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在全國第五個“扶貧日”到來之前,某省開展“精準扶貧,攜手同行”的主題活動,某貧困縣調查基層干部走訪貧困戶數量.鎮(zhèn)有基層干部60,鎮(zhèn)有基層干部60,鎮(zhèn)有基層干部80,每人都走訪了若干貧困戶,按照分層抽樣,三鎮(zhèn)共選40名基層干部,統(tǒng)計他們走訪貧困戶的數量,并將走訪數量分成5,,繪制成如圖所示的頻率分布直方圖.

(1)求這40人中有多少人來自鎮(zhèn),并估計三鎮(zhèn)的基層干部平均每人走訪多少貧困戶;(同一組中的數據用該組區(qū)間的中點值作代表)

(2)如果把走訪貧困戶達到或超過25戶視為工作出色,以頻率估計概率,三鎮(zhèn)的所有基層干部中隨機選取3,記這3人中工作出色的人數為,的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線與橢圓交于、兩點,為坐標原點.

(1)若直線斜率為1,過橢圓的右焦點,求弦的長;

(2)若,且為銳角,求直線斜率的取值范圍.

查看答案和解析>>

同步練習冊答案