分析 先求出函數(shù)f(x)和g(x)的導(dǎo)函數(shù),再利用函數(shù)f(x)和g(x)在區(qū)間[-1,+∞)上單調(diào)性一致即f′(x)g′(x)≥0在[-1,+∞)上恒成立,以及3x2+a>0,來求實數(shù)b的取值范圍.
解答 解:f′(x)=3x2+a,g′(x)=2x+b.
由題得f′(x)g′(x)≥0在[-1,+∞)上恒成立,
因為a>0,故3x2+a>0,
進而2x+b≥0,即b≥-2x在[-1,+∞)上恒成立,
所以b≥2.
故實數(shù)b的取值范圍是[2,+∞),
故答案為:[2,+∞).
點評 本題主要考查導(dǎo)函數(shù)的正負與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com