如圖,四邊形中(圖1),,中點(diǎn)為,將圖1沿直線折起,使二面角為(圖2)
(1)過(guò)作直線平面,且平面=,求的長(zhǎng)度。
(2)求直線與平面所成角的正弦值。
(1)(2)
【解析】
試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013112123044797775964/SYS201311212306157319758649_DA.files/image003.png">中點(diǎn)為,連接AF,EF.
∵∴AF⊥BD,
∵,∴DB2+DC2=BC2,∴△BCD是以BC為斜邊的直角三角形,BD⊥DC,
∵平面,DB=2,∴EF為△BCD的中位線,∴EF∥CD,且EF=CD,
∴EF⊥BD,EF=,
∴∠AFE是二面角A-BD-C的平面角,∠AFE=60°.∴△ABD為等腰直角三角形,∴AF=BD=1,
∴AE=,在直角三角形DFE中,.
(2)以F為原點(diǎn),F(xiàn)B所在直線為x軸,F(xiàn)E所在直線為y軸,平行于EA的直線為z軸,建立空間直角坐標(biāo)系,則由(1)及已知條件可知B(1,0,0),E(0,,0),A(0,,),
D(-1,0,0),C(-1,1,0),
則=(1,-,-) , =(0,-1,0),=(-1,-,-),。
設(shè)平面ACD的法向量為
=(x,y,z),
則,
∴,y=0,
令x=,則z=-2,∴=(,0,-2),故由公式可得直線與平面所成角的正弦值為。
考點(diǎn):三棱錐的幾何特征,平行關(guān)系,垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):中檔題,立體幾何問題中,平行關(guān)系、垂直關(guān)系,角、距離、面積、體積等的計(jì)算,是常見題型,基本思路是將空間問題轉(zhuǎn)化成為平面問題,利用平面幾何知識(shí)加以解決。要注意遵循“一作,二證,三計(jì)算”。通過(guò)建立空間直角坐標(biāo)系,利用空間向量,可簡(jiǎn)化證明過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:廣東省云浮中學(xué)2012屆高三第一次模擬考試數(shù)學(xué)理科試題 題型:044
如圖,四邊形ABCD中(圖1),E是BC的中點(diǎn),BD=2,BC=1,BC=,AB=AD=.將(圖1)沿直線BD折起,使二面角A-BD-C為60°(如圖2)
(1)求證:AE⊥平面BDC;
(2)求異面直線AB與CD所成角的余弦值;
(3)求點(diǎn)B到平面ACD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江西省八所重點(diǎn)高中2012屆高三4月高考模擬聯(lián)考數(shù)學(xué)理科試題 題型:044
如圖,四邊形ABCD中(圖1),E是BC的中點(diǎn),DB=2,DC=1,BC=,AB=AD=.將(圖1)沿直線BD折起,使二面角A-BD-C為60°(如圖2)
(1)求證:AE⊥平面BDC;
(2)求二面角A-DC-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三第一次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分14分)
如圖,四邊形中(圖1),是的中點(diǎn),,,將(圖1)沿直線折起,使二面角為(如圖2)
(1)求證:平面;
(2)求異面直線與所成角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省云浮中學(xué)2011-2012學(xué)年高三第一次模擬考試(數(shù)學(xué)理科) 題型:解答題
如圖,四邊形中(圖1),是的中點(diǎn),,,將(圖1)沿直線折起,使二面角為(如圖2)
(1)求證:平面;
(2)求異面直線與所成角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com