1.已知一組數(shù)據4.6,4.9,5.1,5.3,5.6,則該組數(shù)據的方差是0.116.

分析 求出數(shù)據的平均數(shù),再計算該組數(shù)據的方差.

解答 解:數(shù)據4.6,4.9,5.1,5.3,5.6的平均數(shù)為:
$\overline{x}$=$\frac{1}{5}$×(4.6+4.9+5.1+5.3+5.6)=5.1,
∴該組數(shù)據的方差:
S2=$\frac{1}{5}$×[(4.6-5.1)2+(4.9-5.1)2+(5.1-5.1)2+(5.3-5.1)2+(5.6-5.1)2]=0.116.
故答案為:0.116.

點評 本題考查了平均數(shù)與方差的計算問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.設向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=-$\frac{1}{2}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$,|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知P={y|y=cosθ,θ∈R},Q={x|x2+(1-$\sqrt{2}$)x-$\sqrt{2}$=0},則P∩Q=( 。
A.B.{0}C.{-1}D.$\{-1,\sqrt{2}\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知f(x)是定義在R上的偶函數(shù),且當x≥0時,f(x+2)=f(x),若f(x)滿足:
①x∈[0,2)時,f(x)=a-|x-b|,
②f(x)是定義在R上的周期函數(shù),
③存在m使得f(x+m)=-f(m-x)
則a+b的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖A、B是單位圓O上的動點,C是圓與x軸正半軸的交點,設∠AOC=α.
(1)當點A的坐標為($\frac{3}{5}$,$\frac{4}{5}$)時,求sinα的值;
(2)若0≤α≤$\frac{π}{2}$,且當點A、B在圓上沿逆時針方向移動時總有∠AOB=$\frac{π}{2}$,試求|BC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知$\overrightarrow a$=(cos$\frac{3}{2}$x,-sin$\frac{3}{2}$x),$\overrightarrow b$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),x∈[0,$\frac{π}{2}$].若函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$λ|${\overrightarrow a$+$\overrightarrow b}$|的最小值為-$\frac{3}{2}$,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在△ABC中,$\sqrt{3}$(tanB+tanC)=tanBtanC-1,則sin2A=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x.
(1)求f($\frac{π}{24}$)的值;
(2)若函數(shù)f(x)在區(qū)間[-m,m]上是單調遞增函數(shù),求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知點A(-1,-5),B(3,3),直線l的傾斜角是直線AB的傾斜角的2倍,求直線l的斜率為-$\frac{4}{3}$.

查看答案和解析>>

同步練習冊答案