函數(shù)y=
的定義域?yàn)?div id="r7f1bd5" class='quizPutTag' contenteditable='true'>
.
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的解析式,二次根式的被開方數(shù)大于或等于0,對(duì)數(shù)的真數(shù)大于0,且分母不等于0,列出不等式組,求出解集即可.
解答:
解:根據(jù)題意,得:
>0,
解得1<x<2;
∴函數(shù)f(x)的定義域是(1,2)
故答案為:(1,2).
點(diǎn)評(píng):本題考查了求函數(shù)的定義域的問題,解題時(shí)應(yīng)根據(jù)函數(shù)的解析式有意義,列出不等式組,求出解集,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
隨著蘋果6手機(jī)的上市,很多消費(fèi)者覺得價(jià)格偏高,尤其是一部分大學(xué)生可望而不可及,因此“國(guó)美在線”推出無(wú)抵押分期付款購(gòu)買方式,某分期店對(duì)最近100位采用分期付款的購(gòu)買者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻 數(shù) | 35 | 25 | a | 10 | b |
已知分3期付款的頻率為0.15,并且店銷售一部蘋果6,顧客分1期付款,其利潤(rùn)為1千元;分2期或3期付款,其利潤(rùn)為1.5千元;分4期或5期付款,其利潤(rùn)為2千元,以頻率作為概率.
(Ⅰ)求事件A:“購(gòu)買的3位顧客中,至多有1位分4期付款”的概率;
(Ⅱ)用X表示銷售一該手機(jī)的利潤(rùn),求X的分布列及數(shù)學(xué)期望E(x)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
某校開設(shè)8門校本課程,其中4門課程為人文科學(xué),4門為自然科學(xué),學(xué)校要求學(xué)生 在高中三年內(nèi)從中選修3門課程,假設(shè)學(xué)生選修每門課程的機(jī)會(huì)均等.
(1)求某同學(xué)至少選修1門自然科學(xué)課程的概率;
(2)已知某同學(xué)所選修的3門課程中有1門人文科學(xué),2門自然科學(xué),若該同學(xué)通過人文科學(xué)課程的概率都是
,自然科學(xué)課程的概率都是
,且各門課程通過與否相互獨(dú)立.用ξ表示該同學(xué)所選的3門課程通過的門數(shù),求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)g(x)=(a+1)
x-2+1(a>0)的圖象恒過定點(diǎn)A,且點(diǎn)A又在函數(shù)f(x)=log
(x+a)的圖象.(1)求實(shí)數(shù)a的值;
(2)解不等式f(x)<log
a.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若B=A+
,b=2a,則B=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
在△ABC中,若C=30°,AC=3
,AB=3,則△ABC的面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知點(diǎn)(n,an)都在直線2x-y-16=0上,那么在數(shù)列{an}中有( 。
A、a7+a9>0 |
B、a7+a9<0 |
C、a7+a9=0 |
D、a7•a9=0 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
集合A={(x,y)|x+y=10,x∈N*,y∈N*}的元素個(gè)數(shù)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
對(duì)于任意的
,
,不等式|
|-|
|≤|
+|≤|
|+|
|成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>