1.圓C與直線x+y=0及x+y-4=0都相切,圓心在直線x-y=0上,則圓C的方程為(x-1)2+(y-1)2=2.

分析 由題意設(shè)出圓心坐標,利用圓心到兩切線的距離相等求得圓心坐標,進一步求得圓的半徑,則圓的方程可求.

解答 解:由題意設(shè)圓心坐標為(a,a),則有$\frac{|a+a|}{\sqrt{2}}=\frac{|a+a-4|}{\sqrt{2}}$,
解得:a=1,則r=$\frac{|2a|}{\sqrt{2}}=\sqrt{2}$.
則圓C的方程為(x-1)2+(y-1)2=2.
故答案為:(x-1)2+(y-1)2=2.

點評 本題考查圓的標準方程的求法,考查了直線與圓位置關(guān)系的應(yīng)用,訓練了點到直線的距離公式的應(yīng)用,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y≤0}\\{4x+3y≤12}\end{array}\right.$則z=$\frac{y-1}{x+1}$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}滿足$\frac{1}{{a}_{n+1}}$=$\frac{1}{2{a}_{n}}$+$\frac{1}{2}$且a1=4(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an2-an,且Sn為{bn}的前n項和,證明:12≤Sn<15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設(shè)集合A={x|x2≤x},B={-1,0,1},則集合A∩B的子集共有(  )
A.2個B.3個C.4個D.8個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合M={-2,-1,0,1,2},N={x|(x+1)(x-2)≤0},則M∩N=( 。
A.{-1,0}B.{0,1}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知等式 x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定義映射f(a1,a2,a3,a4)=b1-b2+b3-b4,則f(2,0,1,6)等于( 。
A.-3B.3C.9D.2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.等差數(shù)列{an}的前n項和為Sn,Sm-1=-4,Sm=0,Sm+1=6,則m=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.
(Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.橢圓C:$\frac{{x}^{2}}{4}$+y2=1,A($\sqrt{3}$,$\frac{1}{2}$),B(-$\sqrt{3}$,-$\frac{1}{2}$),點P是橢圓C上的動點,直線PA、PB的斜率為k1,k2,則k1k2=( 。
A.-4B.$\frac{1}{4}$C.4D.-$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案