10.如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.
(Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.

分析 (Ⅰ)證明:AB∥平面PCD,即可證明AB∥EF;
(Ⅱ)利用平面PAD⊥平面ABCD,證明CD⊥AF,PA=AD,所以AF⊥PD,即可證明AF⊥平面PCD;

解答 (本題滿分為12分)
解:(Ⅰ)證明:因為底面ABCD是正方形,
所以AB∥CD.
又因為AB?平面PCD,CD?平面PCD,
所以AB∥平面PCD.
又因為A,B,E,F(xiàn)四點共面,且平面ABEF∩平面PCD=EF,
所以AB∥EF.…(5分)
(Ⅱ)證明:在正方形ABCD中,CD⊥AD.
又因為平面PAD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
所以CD⊥平面PAD.
又AF?平面PAD
所以CD⊥AF.
由(Ⅰ)可知AB∥EF,
又因為AB∥CD,所以CD∥EF.由點E是棱PC中點,所以點F是棱PD中點.
在△PAD中,因為PA=AD,所以AF⊥PD.
又因為PD∩CD=D,所以AF⊥平面PCD.…(12分)

點評 本題考查線面平行的性質,平面與平面垂直的性質,考查線面垂直,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知數(shù)列{an}中,a1=t,an+1=$\frac{{a}_{n}}{2}$+$\frac{2}{{a}_{n}}$,若{an}為單調遞減數(shù)列,則實數(shù)t的取值范圍是( 。
A.(-∞,-2)B.(-2,0)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.圓C與直線x+y=0及x+y-4=0都相切,圓心在直線x-y=0上,則圓C的方程為(x-1)2+(y-1)2=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,一只螞蟻沿側面CC1D1D從C點出發(fā),經(jīng)過棱DD1上的一點M到達A1,當螞蟻所走的路程最短時,
(Ⅰ)求B1M的長;
(Ⅱ)求證:B1M⊥平面MAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}與{bn}滿足an+1-qbn+1=an-qbn,其中q∈R,n∈N*
(1)若{bn}是公差為2的等差數(shù)列,且a1=q=3,求數(shù)列{an}的通項公式;
(2)若{bn}是首項為2,公比為q的等比數(shù)列,a1=3q<0,且對任意m,n∈N*,an≠0,都有$\frac{a_m}{a_n}$∈(${\frac{1}{6}$,6),試求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知集合A={x|x=2k+1,k∈Z},B={x|0<x<5},則A∩B={1,3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在集合A={1,2,3,4,…,2n}中,任取m(m≤n,m,n∈N*)個元素構成集合Am.若Am的所有元素之和為偶數(shù),則稱Am為A的偶子集,其個數(shù)記為f(m);若Am的所有元素之和為奇數(shù),則稱Am為A的奇子集,其個數(shù)記為g(m).令F(m)=f(m)-g(m).
(1)當n=2時,求F(1),F(xiàn)(2),F(xiàn)(3)的值;
(2)求F(m).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+2x.
(1)用定義證明函數(shù)f(x)在(0,+∞)上是增函數(shù);
(2)設g(x)=ln$\frac{x+2}{x-2}$,若對任意x1∈(0,1),x2∈(k,k+1)(k∈N),使f(x1)<g(x2),求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)與雙曲線$\frac{x^2}{2}-{y^2}$=1有共同的焦點,拋物線x2=4y的焦點為橢圓C的一個頂點.
(1)求橢圓C的標準方程;
(2)若點M(x0,y0)在橢圓C上,則點$N(\frac{x_0}{a},\frac{y_0})$稱為點M的一個“橢點”.直線l與橢圓C交于不同的兩點A,B,且A,B兩點的“橢點”分別為P,Q.
(i)若直線l的方程為y=x,求P,Q兩點的坐標;
(ii)若以PQ為直徑的圓經(jīng)過坐標原點O,那么△AOB的面積是否為定值?若是定值,試求出該定值;若不是定值,請說明理由.

查看答案和解析>>

同步練習冊答案