【題目】如圖,在底面為平行四邊形的四棱錐中,過點的三條棱PA、AB、AD兩兩垂直且相等,E,F(xiàn)分別是AC,PB的中點.

(Ⅰ)證明:EF//平面PCD;

(Ⅱ)求EF與平面PAC所成角的大。

【答案】(Ⅰ)見解析; (Ⅱ)見解析.

【解析】

(Ⅰ)連接BD,則E是BD的中點,F(xiàn)是PB的中點得EF//PD。線面平行轉(zhuǎn)化為線線平行。

(Ⅱ)首先找出EF與平面PAC所成的角,由題意可得EF與平面PAC所成的角的大小等于。根據(jù)條件得,所以。

(Ⅰ)證明:如圖,連接BD,則E是BD的中點

又F是PB的中點,∴ EF//PD,

∵ EF不在平面PCD內(nèi),∴ EF//平面PCD。

(Ⅱ)連接PE,∵ ABCD是正方形,∴

平面,∴。

平面,故是PD與平面PAC所成的角,

∵EF//PD,∴EF與平面PAC所成的角的大小等于

∵PA=AB=AD,,

,因此PD=BD

中,,

∴EF與平面PAC所成角的大小是。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ax2+bx+ca≠0)滿足f0)=0,對于任意xR,都有fxx,且,令gx)=fx)﹣x1|λ0).

1)求函數(shù)fx)的表達式;

2)求函數(shù)gx)的單調(diào)區(qū)間;

3)當(dāng)λ2時,判斷函數(shù)gx)在區(qū)間(0,1)上的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

A.12
B.24
C.36
D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P為函數(shù)f(x)=lnx的圖象上任意一點,點Q為圓[x﹣(e+ )]2+y2=1任意一點,則線段PQ的長度的最小值為(
A.
B.
C.
D.e+ ﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率為,橢圓上一點到左右兩個焦點的距離之和是4.

(1)求橢圓的方程;

(2)已知過的直線與橢圓交于兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求證:BD⊥平面ADE;
(2)求直線BE和平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個值為2.
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案