有兩個投資項目、,根據(jù)市場調查與預測,A項目的利潤與投資成正比,其關系如圖甲,B項目的利潤與投資的算術平方根成正比,其關系如圖乙.(注:利潤與投資單位:萬元)

(1)分別將A、B兩個投資項目的利潤表示為投資x(萬元)的函數(shù)關系式;
(2)現(xiàn)將萬元投資A項目, 10-x萬元投資B項目.h(x)表示投資A項目所得利潤與投資B項目所得利潤之和.求h(x)的最大值,并指出x為何值時,h(x)取得最大值.

(Ⅰ);(Ⅱ)當A項目投入3.75萬元,B項目投入6.25萬元時,最大利潤為萬元.

解析試題分析:(Ⅰ)此題為實際應用題,先根據(jù)題意分別寫出函數(shù)關系式,再根據(jù)圖求出函數(shù)解析式.實際題目一定要注意函數(shù)的定義域;(Ⅱ)根據(jù)(1)結合自變量的取值范圍,求出最值.
試題解析:(1)投資為萬元,A項目的利潤為萬元,B項目的利潤為萬元。
由題設,由圖知        2分
所以          4分
從而      6分
(2)
,則        10分
時,此時        11分
答:當A項目投入3.75萬元,B項目投入6.25萬元時,最大利潤為萬元.  12分
考點:1.函數(shù)模型的應用;2.二次函數(shù)在定區(qū)間求最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有實數(shù)根,求實數(shù)a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)如果對于任意的,總成立,求實數(shù)的取值范圍;
(Ⅲ)是否存在正實數(shù),使得:當時,不等式恒成立?請給出結論并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若f(x)的定義域為[a,b],值域為[a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某企業(yè)有兩個生產(chǎn)車間,分別位于邊長是的等邊三角形的頂點處(如圖),現(xiàn)要在邊上的點建一倉庫,某工人每天用叉車將生產(chǎn)原料從倉庫運往車間,同時將成品運回倉庫.已知叉車每天要往返車間5次,往返車間20次,設叉車每天往返的總路程為.(注:往返一次即先從倉庫到車間再由車間返回倉庫)

(Ⅰ)按下列要求確定函數(shù)關系式:
①設長為,將表示成的函數(shù)關系式;
②設,將表示成的函數(shù)關系式.
(Ⅱ)請你選用(Ⅰ)中一個合適的函數(shù)關系式,求總路程 的最小值,并指出點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場在店慶一周年開展“購物折上折活動”:商場內所有商品按標價的八折出售,折后價格每滿500元再減100元.如某商品標價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設購買某商品得到的實際折扣率.設某商品標價為元,購買該商品得到的實際折扣率為
(Ⅰ)寫出當時,關于的函數(shù)解析式,并求出購買標價為1000元商品得到的實際折扣率;
(Ⅱ)對于標價在[2500,3500]的商品,顧客購買標價為多少元的商品,可得到的實際折扣率低于?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中常數(shù)a > 0.
(1) 當a = 4時,證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,求的范圍;   (2)不等式對任意恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案