【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),圓C的標(biāo)準(zhǔn)方程為以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

求直線l和圓C的極坐標(biāo)方程;

若射線l的交點(diǎn)為M,與圓C的交點(diǎn)為AB,且點(diǎn)M恰好為線段AB的中點(diǎn),求a的值.

【答案】1)直線l的極坐標(biāo)方程為,圓C的極坐標(biāo)方程為;(2.

【解析】

直線l的參數(shù)方程消去t可得直線l的普通方程,將代入,能求出直線l的極坐標(biāo)方程由圓的標(biāo)準(zhǔn)方程能求出圓C的極坐標(biāo)方程.

設(shè),聯(lián)立

,從而,進(jìn)而代入,求出a的值即可.

解:直線l的參數(shù)方程為為參數(shù)

在直線l的參數(shù)方程中消去t可得直線l的普通方程為,

代入以上方程中,

得到直線l的極坐標(biāo)方程為

C的標(biāo)準(zhǔn)方程為

C的極坐標(biāo)方程為

在極坐標(biāo)系中,由已知可設(shè)

聯(lián)立,得

點(diǎn)M恰好為AB的中點(diǎn),

,即

代入,

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),函數(shù)在區(qū)間上的最小值為-5,求的值;

(Ⅱ)設(shè),且有兩個(gè)極值點(diǎn).

(i)求實(shí)數(shù)的取值范圍;

(ii)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓:)上,且點(diǎn)到左焦點(diǎn)的距離為3.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,又兩點(diǎn)在橢圓上,且,求凸四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司新發(fā)明了甲、乙兩種不同型號(hào)的手機(jī),公司統(tǒng)計(jì)了消費(fèi)者對(duì)這兩種型號(hào)手機(jī)的評(píng)分情況,作出如下的雷達(dá)圖,則下列說法不正確的是( )

A. 甲型號(hào)手機(jī)在外觀方面比較好.B. 甲、乙兩型號(hào)的系統(tǒng)評(píng)分相同.

C. 甲型號(hào)手機(jī)在性能方面比較好.D. 乙型號(hào)手機(jī)在拍照方面比較好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理財(cái)公司有兩種理財(cái)產(chǎn)品,這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):

產(chǎn)品

投資結(jié)果

獲利20%

獲利10%

不賠不賺

虧損10%

概率

0.2

0.3

0.2

0.3

產(chǎn)品(其中

投資結(jié)果

獲利30%

不賠不賺

虧損20%

概率

0.1

(1)已知甲、乙兩人分別選擇了產(chǎn)品和產(chǎn)品進(jìn)行投資,如果一年后他們中至少有一人獲利的概率大于0.7,求的取值范圍;

(2)丙要將家中閑置的10萬(wàn)元錢進(jìn)行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品和產(chǎn)品之中選其一,應(yīng)選用哪種產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)性;

2)當(dāng)時(shí),記的最小值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 分別為雙曲線的左、右焦點(diǎn), 為雙曲線的左頂點(diǎn),以 為直徑的圓交雙曲線某條漸近線于, 兩點(diǎn),且滿足,則該雙曲線的離心率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前n項(xiàng)和為,若數(shù)列的各項(xiàng)按如下規(guī)律排列:,,,,,,…,,…有如下運(yùn)算和結(jié)論:①;②數(shù)列,,,…是等比數(shù)列;③數(shù)列,,…的前項(xiàng)和為;④若存在正整數(shù),使,則.其中正確的結(jié)論是_____.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近日,據(jù)《三秦都市報(bào)》消息稱陜西新高考方案初稿已經(jīng)形成,新高考從2019年秋季入學(xué)的新高一學(xué)生開始執(zhí)行“3+3”模式,即除語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目外,還要在物理、化學(xué)、生物、歷史、地理、政治六科中選擇三科作為選考科目.已知某生的高考志愿定為北京大學(xué)環(huán)境科學(xué)專業(yè),按照2018年北大高考招生選考科目要求物理、化學(xué)必選,為該生安排課表(上午四節(jié)、下午四節(jié),每門課每天至少一節(jié)課),現(xiàn)該生某天最后兩節(jié)為自習(xí)課,且數(shù)學(xué)不排下午第一節(jié),語(yǔ)文、外語(yǔ)不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則該生該天課表不同的排法有________.

查看答案和解析>>

同步練習(xí)冊(cè)答案