【題目】近日,據(jù)《三秦都市報(bào)》消息稱陜西新高考方案初稿已經(jīng)形成,新高考從2019年秋季入學(xué)的新高一學(xué)生開始執(zhí)行“3+3”模式,即除語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目外,還要在物理、化學(xué)、生物、歷史、地理、政治六科中選擇三科作為選考科目.已知某生的高考志愿定為北京大學(xué)環(huán)境科學(xué)專業(yè),按照2018年北大高考招生選考科目要求物理、化學(xué)必選,為該生安排課表(上午四節(jié)、下午四節(jié),每門課每天至少一節(jié)課),現(xiàn)該生某天最后兩節(jié)為自習(xí)課,且數(shù)學(xué)不排下午第一節(jié),語(yǔ)文、外語(yǔ)不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則該生該天課表不同的排法有________.

【答案】1776

【解析】

選修有4種,排課按照語(yǔ)文、外語(yǔ)排上午和下等分兩類:第一類兩門都在上午,第二類一門在上午一門在下午,分類求出后乘以4即得.

從生物、歷史、地理、政治各任選1科,有4種選法,然后分兩類:

(1)語(yǔ)文、外語(yǔ)排上午,從中任選一個(gè)排,有

(2)語(yǔ)文、外語(yǔ)一門排上午,一門排下午:有,

共有種.

故答案為:1776.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),圓C的標(biāo)準(zhǔn)方程為以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

求直線l和圓C的極坐標(biāo)方程;

若射線l的交點(diǎn)為M,與圓C的交點(diǎn)為A,B,且點(diǎn)M恰好為線段AB的中點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016520日以來(lái),廣東自西北到東南出現(xiàn)了一次明顯降雨.為了對(duì)某地的降雨情況進(jìn)行統(tǒng)計(jì),氣象部門對(duì)當(dāng)?shù)?/span>20~289天內(nèi)記錄了其中100小時(shí)的降雨情況,得到每小時(shí)降雨情況的頻率分布直方圖如下:

若根據(jù)往年防汛經(jīng)驗(yàn),每小時(shí)降雨量在時(shí),要保持二級(jí)警戒,每小時(shí)降雨量在時(shí),要保持一級(jí)警戒.

1)若以每組的中點(diǎn)代表該組數(shù)據(jù)值,求這100小時(shí)內(nèi)每小時(shí)的平均降雨量;

2)若從記錄的這100小時(shí)中按照警戒級(jí)別采用分層抽樣的方法抽取10小時(shí)進(jìn)行深度分析.再?gòu)倪@10小時(shí)中隨機(jī)抽取3小時(shí),求抽取的這3小時(shí)中屬于一級(jí)警戒時(shí)間的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019924日國(guó)家統(tǒng)計(jì)局在慶祝中華人民共和國(guó)成立70周年活動(dòng)新聞中心舉辦新聞發(fā)布會(huì)指出,1952年~2018年,我國(guó)GDP679.1億元躍升至90.03萬(wàn)億元,實(shí)際增長(zhǎng)174倍;人均GDP119元提高到6.46萬(wàn)元,實(shí)際增長(zhǎng)70.全國(guó)各族人民,砥礪奮進(jìn),頑強(qiáng)拼搏,實(shí)現(xiàn)了經(jīng)濟(jì)社會(huì)的跨越式發(fā)展.如圖是全國(guó)2010年至2018GDP總量(萬(wàn)億元)的折線圖.注:年份代碼19分別對(duì)應(yīng)年份20102018.

1)由折線圖看出,可用線性回歸模型擬合與年份代碼的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),并預(yù)測(cè)2021年全國(guó)GDP的總量.

附注:參考數(shù)據(jù):.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

1)求圓的圓心到直線的距離;

2)己知,若直線與圓交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:其中所有假命題的序號(hào)是_______.

①命題的否定是,;

②將函數(shù)的圖像向右平移個(gè)單位,得到函數(shù)的圖像;

③冪函數(shù)上是減函數(shù),則實(shí)數(shù);

④函數(shù)有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

2)若有兩個(gè)不同的極值點(diǎn),記過(guò)點(diǎn),的直線的斜率為k,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,

的面積等于,求

,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠打算設(shè)計(jì)一種容積為2m3的密閉容器用于貯藏原料,容器的形狀是如圖所示的直四棱柱,其底面是邊長(zhǎng)為x米的正方形,假設(shè)該容器的底面及側(cè)壁的厚度均可忽略不計(jì).

1)請(qǐng)你確定x的值,使得該容器的外表面積最小;

2)若該容器全部由某種每平方米價(jià)格為100元的材料做成,且制作該容器僅需將購(gòu)置的材料做成符合需要的矩形,這些矩形即是直四棱柱形容器的上下底面和側(cè)面(假設(shè)這一過(guò)程中產(chǎn)生的費(fèi)用和材料損耗可忽略不計(jì)),再將這些上下底面和側(cè)面的邊緣進(jìn)行焊接即可做成該容器,焊接費(fèi)用是每米500元,試確定x的值,使得生產(chǎn)每個(gè)該種容器的成本(即原料購(gòu)置成本+焊接費(fèi)用)最低.

查看答案和解析>>

同步練習(xí)冊(cè)答案