已知集合A={x|x2-5x+6=0},B={x|ax-6=0}且∁RA⊆∁RB,求實數(shù)a的取值集合.
考點:集合的包含關系判斷及應用
專題:集合
分析:由條件可得B⊆A,分a=0和a≠0,分別求出B,再由B⊆A,求得a的值,即可得到實數(shù)a的值所組成的集合.
解答: 解:A={2,3},
∵∁RA⊆∁RB,
∴B⊆A,
①若a=0,則B=∅,滿足題意.
②若a≠0,則B={
6
a
},
6
a
=2
,或
6
a
=3,
∴a=3或a=2,
∴a的值所組成的集合為{0,2,3}.
點評:本題主要考查集合關系中參數(shù)的取值范圍問題,體現(xiàn)了分類討論的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知z1=1-3i,z2=6-8i.若
1
z
+
1
z1
=
1
z2
,求z的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足z+|z|=2+8i,求復數(shù)z與
.
z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知tanα=3,計算(sinα+cosα)2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
6
x2-3x-2
,求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線頂點在原點,焦點在x軸正半軸上,又知此拋物線上一點A(4,m)到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線y=kx-2相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.
(3)求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a+
1
a
=10,求a2+
1
a2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(m-1)x2+(2m+1)x+1是偶函數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,若
OB
=a1
OA
+a20
OC
,且A,B,C三點共線(該直線不過點O),則S20=
 

查看答案和解析>>

同步練習冊答案