16.已知函數(shù)f(x)=(4-x)ex-2,試判斷是否存在m使得y=f(x)與直線3x-2y+m=0(m為確定的常數(shù))相切?

分析 求出f(x)的導(dǎo)數(shù),可得切線的斜率,設(shè)g(x)=(3-x)ex-2,求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得極值也為最值,假設(shè)存在m滿足題意,由直線方程可得斜率大于最值,即可判斷不存在.

解答 解:函數(shù)f(x)=(4-x)ex-2,
導(dǎo)數(shù)為f′(x)=(3-x)ex-2,
設(shè)g(x)=(3-x)ex-2,則g'(x)=(2-x)ex-2,
由x>2時(shí),g'(x)<0,g(x)遞減;x<2時(shí),g'(x)>0,g(x)遞增.
可推得g(x)極大值為g(2)=1,也為最大值.
假設(shè)y=f(x)與直線3x-2y+m=0(m為確定的常數(shù))相切,
則切線的斜率為$\frac{3}{2}$,
由于切線的斜率的最大值為1.
所以$f'(x)=(3-x){e^{x-2}}=\frac{3}{2}$無解.
所以不存在m滿足題意.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查存在性問題的解法,以及化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=x2+ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M-m(  )
A.與a有關(guān),且與b有關(guān)B.與a有關(guān),但與b無關(guān)
C.與a無關(guān),且與b無關(guān)D.與a無關(guān),但與b有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某學(xué)習(xí)小組由學(xué)生和教師組成,人員構(gòu)成同時(shí)滿足以下三個(gè)條件:
(i)男學(xué)生人數(shù)多于女學(xué)生人數(shù);
(ii)女學(xué)生人數(shù)多于教師人數(shù);
(iii)教師人數(shù)的兩倍多于男學(xué)生人數(shù).
①若教師人數(shù)為4,則女學(xué)生人數(shù)的最大值為6.
②該小組人數(shù)的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若${({1+mx})^6}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,且a1-a2+a3-a4+a5-a6=-63,則實(shí)數(shù)m的值為3或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了研究某學(xué)科成績(滿分100分)是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高二年級抽取了30名男生和20名女生的該學(xué)科成績,得到如圖所示女生成績的莖葉圖.其中抽取的男生中有21人的成績在80分以下,規(guī)定80分以上為優(yōu)秀(含80分).
(1)請根據(jù)題意,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)秀非優(yōu)秀總計(jì)
男生
女生
總計(jì)50
(2)據(jù)此列聯(lián)表判斷,是否有90%的把握認(rèn)為該學(xué)科成績與性別有關(guān)?
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù)當(dāng)x2≤2.706時(shí),無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián);
當(dāng)x2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)x2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)x2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)z滿足$z({\sqrt{3}+i})=1-\sqrt{3}i$,則|z|=( 。
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下面是關(guān)于復(fù)數(shù)z=2-i的四個(gè)命題:p1:|z|=5;p2:z2=3-4i;p3:z的共軛復(fù)數(shù)為-2+i;p4:z的虛部為-1,其中真命題為( 。
A.p2,p3B.p1,p2C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a∈R,函數(shù)f(x)=|x+$\frac{4}{x}$-a|+a在區(qū)間[1,4]上的最大值是5,則a的取值范圍是(-∞,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.記函數(shù)f(x)=$\sqrt{6+x-{x}^{2}}$定義域?yàn)镈.在區(qū)間[-4,5]上隨機(jī)取一個(gè)數(shù)x,則x∈D的概率是$\frac{5}{9}$.

查看答案和解析>>

同步練習(xí)冊答案