已知函數(shù)(其中且),是的反函數(shù).
(1)已知關于的方程在區(qū)間上有實數(shù)解,求實數(shù)的取值范圍;
(2)當時,討論函數(shù)的奇偶性和增減性;
(3)設,其中.記,數(shù)列的前項的和為(),
求證:.
(1);(2)奇函數(shù),減函數(shù);(3)證明見解析.
【解析】
試題分析:(1)這是一個對數(shù)方程,首先要轉化為代數(shù)方程,根據(jù)對數(shù)的性質有,從而有,方程在上有解,就變?yōu)榍蠛瘮?shù)在上的值域,轉化時注意對數(shù)的真數(shù)為正;(2)奇偶性和單調性我們都根據(jù)定義加以解決;(3),
,要證明不等式成立,最好是能把和求出來,但看其通項公式,這個和是不可能求出的,由于我們只要證明不等式,那么我們能不能把放縮后可求和呢?,顯然,即,左邊易證,又由二項式定理
,在時,,所以,注意到,至此不等式的右邊可以求和了,
,得證.
試題解析:(1)轉化為求函數(shù)在上的值域,
該函數(shù)在上遞增、在上遞減,所以的最小值5,最大值9。所以的取值范圍為。 4分
(2)的定義域為, 5分
定義域關于原點對稱,又, ,所以函數(shù)為奇函數(shù)。 6分
下面討論在上函數(shù)的增減性.
任取、,設,令,則,,所以
因為,,,所以. 7分
又當時,是減函數(shù),所以.由定義知在上函數(shù)是減函數(shù). 8分
又因為函數(shù)是奇函數(shù),所以在上函數(shù)也是減函數(shù). 9分
(3) ; 10分
因為,,所以,。 11分
設,時,則 , 12分
且, 13分
由二項式定理, 14分
所以,
從而。 18分
考點:(1)方程有解與函數(shù)的值域;(2)函數(shù)奇偶性與單調性;(3)放縮法證明不等式.
科目:高中數(shù)學 來源:2014屆吉林省吉林市高三開學摸底考試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),其中且.
(I)求函數(shù)的單調區(qū)間;
(II)當時,若存在,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山東冠縣武訓高中高二下第三次模塊考試理科數(shù)學試題(解析版) 題型:解答題
(本題共12分)
已知函數(shù),其中且。
(Ⅰ)討論的單調性;
(Ⅱ)求函數(shù)在〔,〕上的最小值和最大值。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年黑龍江省高三第三次模擬考試理科數(shù)學 題型:解答題
已知函數(shù),(其中且).
(1)討論函數(shù)的單調性;
(2)若,求函數(shù),的最值;
(3)設函數(shù),當時,若對于任意的,總存在唯一
的,使得成立.試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年黑龍江省高一上學期期中考試數(shù)學試卷 題型:解答題
(本題滿分12分)已知函數(shù),其中且.
(1) 判斷的奇偶性;
(2) 判斷在上的單調性,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com