14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{\frac{1}{3}}x,x>1}\end{array}$,若對(duì)任意的x∈R,不等式f(x)≤2m2-$\frac{7}{4}$m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.$(-∞,-\frac{1}{8}]$B.$(-∞,-\frac{1}{8}]∪[1,+∞)$C.[1,+∞)D.$[-\frac{1}{8},\;1]$

分析 求出分段函數(shù)的最大值,把不等式f(x)≤2m2-$\frac{7}{4}$m恒成立轉(zhuǎn)化為2m2-$\frac{7}{4}$大于等于f(x)的最大值恒成立,然后求解不等式得到實(shí)數(shù)m的取值范圍.

解答 解:對(duì)于函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{\frac{1}{3}}x,x>1}\end{array}$,
當(dāng)x≤1時(shí),f(x)=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$$≤\frac{1}{4}$;
當(dāng)x>1時(shí),f(x)=$lo{g}_{\frac{1}{3}}x$<0.
則函數(shù)f(x)的最大值為$\frac{1}{4}$.
則要使不等式f(x)≤2m2-$\frac{7}{4}$m恒成立,
則2m2-$\frac{7}{4}$m$≥\frac{1}{4}$恒成立,
即m≤-$\frac{1}{8}$或m≥1.
故選:B.

點(diǎn)評(píng) 本題考查了恒成立問題,訓(xùn)練了分段函數(shù)的最值的求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,考查運(yùn)算能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一個(gè)正整數(shù)數(shù)表如表(表中下一行中的數(shù)的個(gè)數(shù)比上一行中數(shù)的個(gè)數(shù)多兩個(gè),每行中    的數(shù)成公比為2的等比數(shù)列)則第6行的第5個(gè)數(shù)是(  )
第1行1
第2行2   4   8
第3行16  32  64  128   256
A.229B.230C.231D.232

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知z1=sinθ-$\frac{4}{5}$i,z2=$\frac{3}{5}$-cosθi,若z1-z2是純虛數(shù),則tanθ=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.淮南二中體育教研組為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)本校200名高二學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間(分鐘)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
總?cè)藬?shù)203644504010
將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計(jì)
15110
合計(jì)
(2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的:“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(1-3a)x+10a(x≤6)}\\{{a}^{x-7}(x>6)}\end{array}\right.$,若數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是遞減數(shù)列,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{3}$,1)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{5}{8}$)D.($\frac{5}{8}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)命題p:?x∈R,x2>lnx,則¬p為( 。
A.?x0∈R,x02>lnx0B.?x∈R,x2≤lnxC.?x0∈R,x02≤lnx0D.?x∈R,x2<lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.60°角的弧度數(shù)是( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某居民小區(qū)擬將一塊三角形空地改造成綠地.經(jīng)測(cè)量,這塊三角形空地的兩邊長(zhǎng)分別為32m和68m,它們的夾角是30°.已知改造費(fèi)用為50元/m2,那么,這塊三角形空地的改造費(fèi)用為( 。
A.$27200\sqrt{3}$元B.$54400\sqrt{3}$元C.27200元D.54400元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\frac{3x+1}{x-1}$的值域是(-∞,3)∪(3,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案