10.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)棱PD⊥底面ABCD,E,F(xiàn),M分別是PC,PB,CD的中點.
(1)證明:PB⊥AC;
(2)證明:平面PAD∥平面MEF.

分析 (1)證明:AC⊥平面PBD,即可證明PB⊥AC;
(2)證明EF∥平面PAD;EM∥平面PAD,利用平面與平面平行的判定定理,即可證明平面PAD∥平面MEF.

解答 證明:(1)由PD⊥底面ABCD,得PD⊥AC.…(1分)
∵底面ABCD是菱形,
∴BD⊥AC,…(2分)
又因為PD∩BD=D,…(3分)
∴AC⊥平面PBD,…(4分)
而PB?平面PBD,…(4分)
∴AC⊥PB.  …(6分)
(2)因為E,F(xiàn)為PC,PB中點,所以EF∥BC
所以EF∥AD,…(7分)
又因為AD?面PAD,EF?面PAD…8分
所以EF∥平面PAD;…(9分)
同理可證:EM∥平面PAD.…(10分)
又因為EF,EM?面EFM,EF∩EM=E…(11分)
所以面EFM∥面PAD.…(12分)

點評 本題主要考查了直線與平面垂直的性質(zhì),以及直線與平面平行、平面與平面平行的判定,同時考查了空間想象能力和論證推理的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|x2-3x≥0},B={x|1<x≤3},則如圖所示陰影部分表示的集合為(  )
A.[0,1)B.(0,3]C.(1,3)D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|log2(a-x)≤2},集合B={x|x2-3x+2=0}.
(1)若A∩B=B,求實數(shù)a的取值范圍;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.2010°=$\frac{67}{6}π$rad.與2010°終邊相同的最小正角為210°,最大負(fù)角為-150°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知偶函數(shù)f(x)滿足$f(x+1)=-\frac{1}{f(x)}$,且當(dāng)x∈[0,1]時,f(x)=x,若區(qū)間[-1,3]上,函數(shù)g(x)=f(x)-kx-k有3個零點,則實數(shù)k的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)離散型隨機變量滿足E(X)=6,則E[3(X-2)]=( 。
A.18B.12C.20D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.平面內(nèi)兩點A(1,2),B(3,1)到直線l的距離分別為$\sqrt{2},\sqrt{6}-\sqrt{2}$,則滿足條件的直線l的條數(shù)為( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|-1<x≤0},B={a},A∩B=B,則實數(shù)a的取值范圍是( 。
A.[0,1)B.(-1,1)C.(-1,0]D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.有下列說法:
①函數(shù)y=$\sqrt{lo{g}_{\frac{1}{2}}(3-2x)}$的定義域是[1,+∞);
②函數(shù)f(x)=log2($\sqrt{{x}^{2}+1}$-x)為奇函數(shù);
③已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x(x≤0)}\\{{x}^{-\frac{1}{2}}(x>0)}\end{array}\right.$,若函數(shù)g(x)=f(x)+m有3個零點,則實數(shù)m的取值范圍是(-1,0);
④函數(shù)y=loga(5-ax)在區(qū)間[-1,3)上單調(diào)遞減,則a的范圍是(1,$\frac{5}{3}$];
⑤若函數(shù)y=($\frac{2}{2c+1}$)-x在R上單調(diào)遞減,且函數(shù)g(x)=lg(2cx2+2x+1)的值域為R,則c的取值范圍是(0,$\frac{1}{2}$).
其中正確說法有②③④⑤(填寫正確說法是序號)

查看答案和解析>>

同步練習(xí)冊答案