分析 (1)利用絕對值不等式的解法,化簡為二次不等式求解即可.
(2)求出不等式的左側(cè)的最小值與右側(cè)的最大值,轉(zhuǎn)化為絕對值不等式求解即可.
解答 解:(1)由f(x)>0得|x-2|>|x-1|,
兩邊平方得x2-4x+4>x2-2x+1,
解得$x<\frac{3}{2}$,即實數(shù)x的取值范圍是$(-∞,\frac{3}{2})$…(5分)
(2)|a+b|+|a-b|≥|a+b+a-b|=2|a|,
∵f(x)=|x-2|-|x-1|=$\left\{\begin{array}{l}{-1,x≥2}\\{3-2x,1≤x<2}\\{1,x<1}\end{array}\right.$,f(x)max=1,
∴$2|a|≥1⇒|a|≥\frac{1}{2}⇒a≥\frac{1}{2}或a≤-\frac{1}{2}$.
所以a的取值范圍為$(-∞,-\frac{1}{2}]∪[\frac{1}{2},+∞)$…(10分)
點評 本題考查絕對值不等式的解法,函數(shù)恒成立條件的應(yīng)用,分段函數(shù)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π-2}{4}$ | B. | π-2 | C. | 2π-2 | D. | 4π-8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com