7.在長方體ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,求直線A1B與平面ACC1A1所成角的正弦值.

分析 連接BD,BD∩AC=O,連接A1O,則BD⊥AC,BD⊥平面ACC1A1,∠BA1O是直線A1B與平面ACC1A1所成角.

解答 解:連接BD,BD∩AC=O,連接A1O,則BD⊥AC,BD⊥平面ACC1A1,∠BA1O是直線A1B與平面ACC1A1所成角.
∵DA=DC=4,DD1=3,
∴BO=2$\sqrt{2}$,A1B=$\sqrt{5}$,
∴直線A1B與平面ACC1A1所成角的正弦值=$\frac{{2\sqrt{2}}}{5}$.

點評 此題考查了直線與平面所成的角,找出直線與平面所成的角是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知動圓過定點P(2,0),且在y軸上截得弦長為4.
(1)求動圓圓心的軌跡Q的方程;
(2)已知點E(m,0)為一個定點,過E點分別作斜率為k1、k2的兩條直線l1、l2,直線l1交軌跡Q于A、B兩點,直線l2交軌跡Q于C、D兩點,線段AB、CD的中點分別是M、N.若k1+k2=1,求證:直線MN恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在長方體ABCD-A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中點.
(1)求證:A1C∥平面BED;
(2)求二面角E-BD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.根據(jù)下列條件,解三角形.
(Ⅰ)已知 b=4,c=8,B=30°,求C,A,a;
(Ⅱ)在△ABC中,B=45°,C=75°,b=2,求a,c,A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,設F1、F2分別為橢圓的左、右焦點,橢圓上任意一個動點M到左焦點F1的距離的最大值 為$\sqrt{2}$+1
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線L的斜率為k,且過左焦點F1,與橢圓C相交于P、Q兩點,若△PQF2的面積為$\frac{\sqrt{10}}{3}$,試求k的值及直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設函數(shù)f(x)=2ax2+2bx,若存在實數(shù)x0∈(0,t),使得對任意不為零的實數(shù)a,b均有f(x0)=a+b成立,則t的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,動直線l與橢圓交于B,C兩點(B在第一象限).
(1)若點B的坐標為(1,$\frac{3}{2}$),求△OBC面積的最大值;
(2)設B(x1,y1),C(x2,y2),且3y1+y2=0,求當△OBC面積最大時,直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)y=f(x2-2x)在區(qū)間(-∞,-1]上單調(diào)遞增,在區(qū)間[1,3]上是減函數(shù),則y=f(x)( 。
A.在區(qū)間(-∞,3]上遞增B.在區(qū)間(-∞,-1]上遞增
C.在區(qū)間(-∞,3]上遞減D.在區(qū)間(-∞,-1]上遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知lnx+1≤x(x>0),則$\frac{{{x^2}-1nx+x}}{x}(x>0)$的最小值為1.

查看答案和解析>>

同步練習冊答案