【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.

(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};

(2)若a是從區(qū)間[0,5]中任取的一個(gè)數(shù),b是從區(qū)間[2,4]中任取的一個(gè)數(shù).

【答案】(1) (2)

【解析】

(1)設(shè)事件A為“方程x2+2ax+b2=0有實(shí)根”,當(dāng)a≥0,b≥0時(shí),方程x2+2ax+b2=0有實(shí)根的充要條件為ab,利用列舉法能求出事件A發(fā)生的概率為P(A).

(2)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>{(a,b)|0≤a≤5,2≤b≤4}.構(gòu)成事件A的區(qū)域?yàn)?/span>{(a,b)|0≤a≤5,2≤b≤4,a≥b},數(shù)形結(jié)合能求出所求的概率.

設(shè)事件A為方程有實(shí)根,

當(dāng),時(shí),方程有實(shí)根的充要條件為.

基本事件共有36個(gè):(1,1),(1,2),(1,3),(1,4)(1,5),(1,6),(2,1),(2,2),(2,3),(2,4)(2,5),(2,6),(3,1)(3,2),(3,3),(3,4),(3,5),(3,6),(4,1)(4,2)(4,3)(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4)(6,5),(6,6),其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值.事件A中包含21個(gè)基本事件,

故事件A發(fā)生的概率為

(2) 試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)閧(a,b)|0≤a≤5,2≤b≤4}.

構(gòu)成事件A的區(qū)域?yàn)閧(a,b)|0≤a≤5,2≤b≤4,a≥b},概率為兩者的面積之比,

所以所求的概率為P(A)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1﹣an=2,等比數(shù)列{bn}滿足b1=a1 , b4=a4+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共13分)

如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直。

EF//ACAB=,CE=EF=1

)求證:AF//平面BDE;

)求證:CF⊥平面BDF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,且,,平面底面,的中點(diǎn), 是棱的中點(diǎn), ,.

(1)求證:平面BDM; (2)D到面PBC距離;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若樣本的平均數(shù)是,方差是,則對(duì)樣本,下列結(jié)論正確的是 ( )

A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25

C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取的最小正值時(shí),n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在鈍角△ABC中,∠A為鈍角,令 = = ,若 =x +y (x,y∈R).現(xiàn)給出下面結(jié)論:
①當(dāng)x= 時(shí),點(diǎn)D是△ABC的重心;
②記△ABD,△ACD的面積分別為SABD , SACD , 當(dāng)x= 時(shí), ;
③若點(diǎn)D在△ABC內(nèi)部(不含邊界),則 的取值范圍是 ;
④若 ,其中點(diǎn)E在直線BC上,則當(dāng)x=4,y=3時(shí),λ=5.
其中正確的有(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形,.

(1)證明:面;

(2)若與底面所成的角為, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司對(duì)新招聘的員工張某進(jìn)行綜合能力測(cè)試,共設(shè)置了A,B,C三個(gè)測(cè)試項(xiàng)目.假定張某通過項(xiàng)目A的概率為 ,通過項(xiàng)目B,C的概率均為a(0<a<1),且這三個(gè)測(cè)試項(xiàng)目能否通過相互獨(dú)立.
(1)用隨機(jī)變量X表示張某在測(cè)試中通過的項(xiàng)目個(gè)數(shù),求X的概率分布和數(shù)學(xué)期望E(X)(用a表示);
(2)若張某通過一個(gè)項(xiàng)目的概率最大,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案