15.設(shè)向量$\overrightarrow{a}$=(-1,-1,1),$\overrightarrow$=(-1,0,1),則cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{3}$

分析 cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$,由此能求出結(jié)果.

解答 解:∵向量$\overrightarrow{a}$=(-1,-1,1),$\overrightarrow$=(-1,0,1),
∴cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{2}{\sqrt{3}•\sqrt{2}}$=$\frac{\sqrt{6}}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查空間向量的夾角的余弦值的求法,考查空間空間向量夾角余弦值公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.命題:?x∈A,均有x∈B的否定是?x0∈A,則x0∉B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+4cosα}\\{y=2+4sinα}\end{array}\right.$(α為參數(shù)),直線l過(guò)定點(diǎn)P(3,5),傾斜角為$\frac{π}{3}$,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)試寫(xiě)出曲線C的極坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{1}{3}$ax3-x2+x在區(qū)間(0,2)上是單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍為a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知p:-x2+4x+12≥0,q:x2-2x+1-m2≤0(m>0).
(Ⅰ)若p是q充分不必要條件,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若“¬p”是“¬q”的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)拋物線x2=4y,則其焦點(diǎn)坐標(biāo)為(0,1),準(zhǔn)線方程為y=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.等差數(shù)列{an}中,已知a4+a6=22,則數(shù)列{an}的前9項(xiàng)和S9的值為99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.拋物線y2=8x的焦點(diǎn)為F,在該拋物線上存在一組點(diǎn)列P1(x1,y1),P2(x2,y2)…P1(x2017,y2017),使得|P1F|+|P2F|+…+|P2017F|=6051,則y12+y22+…+y20172=( 。
A.10085B.16128C.12102D.16136

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列命題中:
①若$\vec a$與$\vec b$互為相反向量,則$|{\vec a}|=|{\vec b}|$;
②若$|{\vec a}|=1$,則$\vec a=±1$;  
③若$\vec a•\vec b=0$,則$\vec a=\vec 0$或$\vec b=\vec 0$;
④若$\vec a•\vec c=\vec b•\vec c$,且$\vec c≠\vec 0$,則$\vec a=\vec b$.   其中假命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案