【題目】已知橢圓的短軸長(zhǎng)為,且橢圓的一個(gè)焦點(diǎn)在圓上.
(1)求橢圓的方程;
(2)已知橢圓的焦距小于,過(guò)橢圓的左焦點(diǎn)的直線與橢圓相交于兩點(diǎn),若,求
【答案】(1)或.(2)
【解析】
(1)由題意可知:b=1,由焦點(diǎn)在圓上,可求得c,進(jìn)而求得a,即可求得橢圓方程;
(2設(shè)出直線l的方程,代入橢圓,得到A、B的縱坐標(biāo)的關(guān)系,利用向量轉(zhuǎn)化的縱坐標(biāo)的關(guān)系,求得直線方程,利用弦長(zhǎng)公式可得所求.
(1)因?yàn)闄E圓的短軸長(zhǎng)為,所以,則.
圓與軸的交點(diǎn)為,,
故或,
從而或,
故橢圓的方程為或.
(2)設(shè),,由,得.
因?yàn)闄E圓的焦距小于,所以橢圓的方程為,
當(dāng)直線的斜率為0時(shí),AF=,BF=,不滿足題意,
所以將的方程設(shè)為,代入橢圓方程,消去,得,
所以,,
將代入,得.
故 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為,點(diǎn)M的極坐標(biāo)為,若直線l過(guò)點(diǎn)P,且傾斜角為,圓C以M為圓心,1為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
(2)設(shè)直線l與圓C相交于AB兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從拋物線上任意一點(diǎn)P向x軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線與軌跡c交于兩點(diǎn),T為C上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過(guò)x軸上的定點(diǎn)?若過(guò)定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】科研人員在對(duì)人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡(jiǎn)單隨機(jī)樣本數(shù)據(jù),如下表:
根據(jù)上表的數(shù)據(jù)得到如下的散點(diǎn)圖.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:
(i)求;
(ii)計(jì)算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.
(2)若y關(guān)于x的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計(jì)年齡為50歲時(shí)人體的脂肪含量。
附:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.若直線a,b與平面所成角都是30°,則這兩條直線平行
B.若直線a與平面、平面所成角相等,則
C.若平面內(nèi)不共線三點(diǎn)到平面的距離相等,則
D.已知二面角的平面角為120°,P是l上一定點(diǎn),則一定存在過(guò)點(diǎn)P的平面,使與,與所成銳二面角都為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過(guò)程逐次得到各個(gè)圖形,如圖.
現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心O,點(diǎn)C在第一象限,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P、Q為橢圓上不重合的兩點(diǎn)且異于A、B,若的平分線總是垂直于x軸,問(wèn)是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說(shuō)明理由;若存在,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面,,,,.
(1)當(dāng)變化時(shí),點(diǎn)到平面的距離是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由;
(2)當(dāng)直線與平面所成的角為45°時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com