12.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( 。
A.y=|x|B.y=2-xC.y=$\frac{1}{x}$D.y=-x2+4

分析 根據(jù)常見的基本初等函數(shù)的圖象與性質(zhì),進行判斷即可.

解答 解:對于A,函數(shù)y=|x|在[0,+∞)是增函數(shù),
∴在區(qū)間(0,1)上是增函數(shù),滿足題意;
對于B,函數(shù)y=2-x在R上是增函數(shù),
∴在區(qū)間(0,1)上是減函數(shù),不滿足題意;
對于C,函數(shù)y=$\frac{1}{x}$在(0,+∞)上是減函數(shù),
∴在區(qū)間(0,1)上是減函數(shù),不滿足題意;
對于D,函數(shù)y=-x2+4在[0,+∞)上是減函數(shù),
∴在區(qū)間(0,1)上是減函數(shù),不滿足題意.
故選:A.

點評 本題考查了常見的基本初等函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2在定義域內(nèi)有極值,則實數(shù)a的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知關(guān)于x方程|log1.4|x-1||=1.4|x-1|,則該方程的所有根的和為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)n≥2,n∈N*,有序數(shù)組(a1,a2,…,an)經(jīng)m次變換后得到數(shù)組(bm,1,bm,2,…,bm,n),其中b1,i=ai+ai+1,bm,i=bm-1,i+bm-1,i+1(i=1,2,…,n),an+1=a1,bm-1,n+1=bm-1,1(m≥2).例如:有序數(shù)組(1,2,3)經(jīng)1次變換后得到數(shù)組(1+2,2+3,3+1),即(3,5,4);經(jīng)第2次變換后得到數(shù)組(8,9,7).
(1)若ai=i(i=1,2,…,n),求b3,5的值;
(2)求證:bm,i=$\sum_{j=0}^{m}$ai+jCmj,其中i=1,2,…,n.
(注:i+j=kn+t時,k∈N*,i=1,2,…,n,則ai+j=a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若x,y均為正數(shù),且9x+y=xy,則x+y的最小值是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(Ⅰ)解不等式|x-1|+|2x+1|>3
(Ⅱ)如果a,b∈[-1,1],求證|1+$\frac{ab}{4}$|>|$\frac{a+b}{2}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知角α是第二象限角,直線2x+(tanα)y+1=0的斜率為$\frac{8}{3}$,則cosα等于( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某程序框圖如圖所示,則該程序運行后輸出的值是( 。
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.觀察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照此規(guī)律,第4個等式可表示為(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7.

查看答案和解析>>

同步練習(xí)冊答案