【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個內接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知,綠地面積為.

(1)寫出關于的函數(shù)關系式,并指出這個函數(shù)的定義域.

(2)為何值時,綠地面積最大?

【答案】1y=-2x2+(a2x0<x≤2

2)當時,AE時,綠地面積取最大值;

a≥6時,AE2時,綠地面積取最大值2a4

【解析】

解:(1SΔAEHSΔCFGx2,SΔBEFSΔDGH(ax)(2x)……1

ySABCD2SΔAEH2SΔBEF2ax2(ax)(2x)=-2x2(a2)x……3

,得

y=-2x2(a2)x,其定義域為……4

2)當,即a<6時,則x時,y取最大值……6

≥2,即a≥6時,y=-2x2(a2)x,在0,2]上是增函數(shù),則x2時,y取最大值2a4 ……8

綜上所述:當a<6時,AE時,綠地面積取最大值;當a≥6時,AE2時,綠地面積取最大值2a4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產一種機器的固定成本(即固定投入)為 0.5 萬元,但每生產100臺時,又需可變成本(即另增加投入)0.25 萬元.市場對此商品的年需求量為 500臺,銷售的收入(單位:萬元)函數(shù)為 R(x)=5x-x2(0≤x≤5),其中 x 是產品生產的數(shù)量(單位:百臺).

(1)求利潤關于產量的函數(shù).

(2)年產量是多少時,企業(yè)所得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查每天微信用戶使用微信的時間,某經銷化妝品分微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100


(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與“性別”有關?
(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜各1份,再從抽取的這5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列和數(shù)學期望.
參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.321

3.840

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD邊長為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點F,連結CF并延長交AB于點E.
(1)求證:AE=EB;
(2)求EFFC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)

(1)設函數(shù),且函數(shù)在區(qū)間上是單調函數(shù),求實數(shù)的取值范圍;

(2)設函數(shù),求當時,函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上有兩個零點,求的取值范圍;

(2)設,當時, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中, , 的中點, 平面,垂足落在線段上,已知.

(1)證明: ;

(2)在線段上是否存在一點,使得二面角為直二面角?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,過點的直線與橢圓相交于兩點,且的周長為8.

(1)求橢圓的方程;

(2)若經過原點的直線與橢圓相交于兩點,且,試判斷是否為定值?若為定值,試求出該定值;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人同時生產內徑為的一種零件,為了對兩人的生產質量進行評比,從他們生產的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產的零件內徑的尺寸看、誰生產的零件質量較高.

查看答案和解析>>

同步練習冊答案