【題目】已知函數(shù).

(1)若函數(shù)上有兩個(gè)零點(diǎn),求的取值范圍;

(2)設(shè),當(dāng)時(shí), ,求的取值范圍.

【答案】(1) (2)

【解析】試題分析:(1)求導(dǎo)得,可得上是減函數(shù),在上是增函數(shù),因?yàn)?/span>上有兩個(gè)零點(diǎn),需要滿(mǎn)足 , ,可求a的范圍.

(2)求導(dǎo)可得上是減函數(shù),在上是增函數(shù),當(dāng)時(shí), ,只需,解得.

試題解析:(1) ,

,∴時(shí), 時(shí), ,

上是減函數(shù),在上是增函數(shù),

,

上有兩個(gè)零點(diǎn),∴ , ,

,∴.

(2)

時(shí), , ; , ,

上是減函數(shù),在上是增函數(shù),

, ,由題意得,∴.

點(diǎn)晴:本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個(gè)數(shù)問(wèn)題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問(wèn)題就是判斷是否存在零點(diǎn)的問(wèn)題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問(wèn)題處理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為直角梯形,,,,,且平面平面

(1)求證:;

(2)在線(xiàn)段上是否存在一點(diǎn),使二面角的大小為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 分別為橢圓的左、右焦點(diǎn),橢圓離心率,直線(xiàn)通過(guò)點(diǎn),且傾斜角是45°.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線(xiàn)與橢圓交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為.

(1)設(shè)為參數(shù),若,求直線(xiàn)的參數(shù)方程;

(2)已知直線(xiàn)與曲線(xiàn)交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開(kāi)辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知設(shè),綠地面積為.

(1)寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域.

(2)當(dāng)為何值時(shí),綠地面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若 軸垂直,且.

(1)求橢圓方程;

(2)過(guò)點(diǎn)且不垂直于坐標(biāo)軸的直線(xiàn)與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿(mǎn)足的直線(xiàn)的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別為A,B,C所對(duì)邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長(zhǎng)c的值;
(2)若E為AB的中點(diǎn),求線(xiàn)段EC的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線(xiàn)的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(xiàn)(直線(xiàn)的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)城市共享單車(chē)的投放在我國(guó)各地迅猛發(fā)展,共享單車(chē)為人們出行提供了很大的便利,但也給城市的管理帶來(lái)了一些困難,現(xiàn)某城市為了解人們對(duì)共享單車(chē)投放的認(rèn)可度,對(duì)年齡段的人群隨機(jī)抽取人進(jìn)行了一次你是否贊成投放共享單車(chē)的問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組號(hào)

分組

贊成投放的人數(shù)

贊成投放的人數(shù)占本組的頻率

第一組

第二組

第三組

第四組

第五組

第六組

)求, , 的值.

)在第四、五、六組贊成投放共享單車(chē)的人中,用分層抽樣的方法抽取人參加共享單車(chē)騎車(chē)體驗(yàn)活動(dòng),求第四、五、六組應(yīng)分別抽取的人數(shù).

)在()中抽取的人中隨機(jī)選派人作為領(lǐng)隊(duì),求所選派的人中第五組至少有一人的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案