【題目】四棱錐中,底面為直角梯形,,,,,,且平面平面.
(1)求證:;
(2)在線段上是否存在一點,使二面角的大小為,若存在,求出的值;若不存在,請說明理由.
【答案】(1)證明見解析;(2) 存在,.
【解析】
試題分析:(1)借助題設條件運用線面垂直的性質定理推證;(2)依據(jù)題設建立空間直角坐標系,運用空間向量的數(shù)量積公式探求.
試題解析:
證明:(1)過作,交于,連接.
,,,四邊形是矩形,.,
,,.…………2分
,.又平面,平面,,
平面,……3分
平面,.………………………5分
(2)平面平面,平面平面,,
平面.
以為原點,以,,為坐標軸建立空間直角坐標系,…………………7分
如圖所示:則,,假設存在點使得二面角的大小為,則,.
設平面的法向量為,則.
,令得.………9分
平面,
為平面的一個法向量.…………………10分
.……………………11分
解得..…………………12分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)當a≥1時,求f(x)在[0,e](e為自然對數(shù)的底數(shù))上的最大值;
(2)對任意的正實數(shù)a,問:曲線y=f(x)上是否存在兩點P,Q,使得△POQ(O為坐標原點)是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點,焦距為,動弦平行于軸,且.
(1)求橢圓的方程;
(2)過分別作直線交橢圓于和,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種機器的固定成本(即固定投入)為 0.5 萬元,但每生產(chǎn)100臺時,又需可變成本(即另增加投入)0.25 萬元.市場對此商品的年需求量為 500臺,銷售的收入(單位:萬元)函數(shù)為 R(x)=5x-x2(0≤x≤5),其中 x 是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺).
(1)求利潤關于產(chǎn)量的函數(shù).
(2)年產(chǎn)量是多少時,企業(yè)所得的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點作圓的切線,切點分別為,直線與軸交于點,過點的直線交橢圓于兩點,點關于軸的對稱點為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)當時,求曲線在點處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若在區(qū)間上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是滿足下列性質的所有函數(shù)組成的集合:對任何(其中為函數(shù)的定義域),均有成立.
(1)已知函數(shù),,判斷與集合的關系,并說明理由;
(2)是否存在實數(shù),使得,屬于集合?若存在,求的取值范圍,若不存在,請說明理由;
(3)對于實數(shù)、 ,用表示集合中定義域為區(qū)間的函數(shù)的集合.
定義:已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱為上的“絕對差有界函數(shù)”,其中常數(shù)稱為的“絕對差上界”,的最小值稱為的“絕對差上確界”,符號;求證:集合中的函數(shù)是“絕對差有界函數(shù)”,并求的“絕對差上確界”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com