4.已知cosα=-$\frac{\sqrt{5}}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求sinα的值;
(Ⅱ)求$\frac{sin(\frac{3π}{2}+α)+2cos(\frac{π}{2}+α)}{cos(3π-α)}$的值.

分析 (Ⅰ)由條件利用同角三角函數(shù)的基本關(guān)系求得sinα的值.
(Ⅱ)由條件誘導(dǎo)公式,求得要求式子的值.

解答 解:(Ⅰ)∵cosα=-$\frac{\sqrt{5}}{5}$,α∈($\frac{π}{2}$,π),∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{2\sqrt{5}}{5}$.
(Ⅱ)$\frac{sin(\frac{3π}{2}+α)+2cos(\frac{π}{2}+α)}{cos(3π-α)}$=$\frac{-cosα-2sinα}{-cosα}$=$\frac{cosα+2sinα}{cosα}$=$\frac{-\frac{\sqrt{5}}{5}+2•\frac{2\sqrt{5}}{5}}{-\frac{\sqrt{5}}{5}}$=-3.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:?x∈(0,+∞),2x>log2x,
命題q:?x0∈(0,+∞),sinx0=lnx0,
則下列命題中的真命題是( 。
A.(¬p)∨(¬q)B.(¬p)∧(¬q)C.(¬p)∧qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若A${\;}_{2n}^{3}$=10A${\;}_{n}^{3}$,則n=( 。
A.1B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將函數(shù)y=sin2x的圖象沿x軸向右平移$\frac{π}{8}$個單位,得到函數(shù)y=f(x)的圖象,則y=f(x)在[0,π]的單調(diào)增區(qū)間為$[{0,\frac{3}{8}π}]、[{\frac{7π}{8},π}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知p和q都是命題,則“命題p∨q為真命題”是“命題p∧q為真命題”的必要不充分條件.(填“充分不必要,必要不充分,充要或既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.奇函數(shù)f(x)(x∈R)滿足f(-3)=0,且在區(qū)間[0,2]于[2,+∞)上分別是遞減和遞增,則不等式(1-x2)f(x)>0的解集(-∞,-3)∪(-1,0)∪(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y-1≤0}\end{array}\right.$,則F(x,y)=log2(y+1)+log${\;}_{\frac{1}{2}}$(x+1)的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求($\frac{\sqrt{x}}{3}$+$\frac{1}{\sqrt{x}}$)12展開式中的第7頂.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)g(x)的圖象如圖所示,下列數(shù)值排序正確的是( 。
A.0<g′(2)<g′(3)<g(3)-g(2)B.0<g′(3)<g(3)-g(2)<g′(2)C.0<g′(2)<g(3)-g(2)<g′(3)D.0<g(3)-g(2)<g′(2)<g′(3)

查看答案和解析>>

同步練習(xí)冊答案