求證:如果兩條直線同時垂直于一個平面,那么這兩條直線平行.
考點:直線與平面垂直的性質(zhì)
專題:證明題,空間位置關系與距離
分析:由直線與平面垂直的性質(zhì)可得線線垂直,從而可證線線平行.
解答: 證明:設直線a、b與平面α的交點分別是A,B,連A,B連點成一條直線AB,
因為直線a、b垂直于平面α,
所以直線a、b垂直直線AB,
所以a∥b.
點評:本題主要考察了直線與平面垂直的性質(zhì),屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足
zi
2+i
=2-i(i為虛數(shù)單位),則復數(shù)z=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)過原點分別作函數(shù)f(x)與g(x)的切線,且兩切線的斜率互為倒數(shù),a∈[n,n+1],n∈Z,求n的值;
(Ⅲ)求證:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)…[1+
2n
(2n-1+1)(2n+1)
]與e的大小,并證明你的結論(其中n∈N*,e是自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在空間四面體OABC中,OB=OC,AB=AC,求證:OA⊥BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知3a4-8a3-6a2+24a=13,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
y2
a2
-
x2
b2
=1(a>0,b>0)的離心率為
5
2
,則C的漸近線方程為( 。
A、y=±2x
B、y=±
1
2
x
C、y=±4x
D、y=±
1
4
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線y2=2x的焦點為F,過點M(3,0)的直線與拋物線相交于A,B兩點,與拋物線的準線相交于點C,|BF|=
5
2
,則△BCF與△ACF的面積之比
S△BCF
S△ACF
=( 。
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)滿足:f(0)=3;f(x+1)-f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍;
(3)令g(x)=f(|x|)+m(m∈R),試討論函數(shù)g(x)零點個數(shù)的情況,請寫出每種情況下對應的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
3
)
.求函數(shù)f(x)的對稱軸,并求函數(shù)f(x)在區(qū)間[0,
π
2
]
內(nèi)的值域.

查看答案和解析>>

同步練習冊答案