5.某路公交車在6:30,7:00,7:30準時發(fā)車,小明同學(xué)在6:50至7:30之間到達該站乘車,且到達該站的時刻是隨機的,則他等車時間不超過10分鐘的概率為$\frac{1}{2}$.

分析 本題屬于幾何概型,只要求出小明等車時間不超過10分鐘的時間長度,代入幾何概型概率計算公式,可得答案

解答 解:小明在6:50至7:30之間到達發(fā)車站乘坐班車,總時長為40分鐘,
設(shè)小明到達時間為y,
當y在6:50至7:00,或7:20至7:30時,
小明等車時間不超過10分鐘的時長為20分鐘,
由幾何概型的公式得到故P=$\frac{20}{40}=\frac{1}{2}$;
故答案為:$\frac{1}{2}$.

點評 本題考查的知識點是幾何概型,明確時間段,利用幾何概型公式解答,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖所示程序框圖,若輸入的k=4,則輸出的s=( 。
A.$\frac{1}{3}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)Sn為等差數(shù)列{an}的前n項和,且a3=5,S6=42,則S9=117.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(-4,x),$\overrightarrow$=(1,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F(xiàn)分別是AB,AC上的點,且$\overrightarrow{AE}=λ\overrightarrow{AB},\overrightarrow{AF}=μ\overrightarrow{AC}$,(其中λ,μ∈(0,1)),且λ+4μ=1,若線段EF,BC的中點分別為M,N,則$\overrightarrow{MN}$的最小值為$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}滿足a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$,n∈N,*
(1)求a2,a3;
(2)證明:數(shù)列{an}為遞增數(shù)列
(3)證明:$\frac{n}{2n+1}$≤an$≤\frac{2n-1}{2n+1}$,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=3,|$\overrightarrow{a}$-$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$夾角為θ,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|cosθ}$+$\frac{|\overrightarrow|}{|\overrightarrow{a}|cosθ}$=( 。
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{5}{4}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,正四面體ABCD中,E、F分別是棱BC和AD的中點,則直線AE和CF所成的角的余弦值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,陰影部分的面積為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.$\frac{7}{6}$

查看答案和解析>>

同步練習(xí)冊答案