精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax3+bx+c在x=2處取得極值為c-16
(1)求a、b的值;
(2)若f(x)有極大值28,求f(x)在[-3,3]上的最大值.
分析:(1)先對函數f(x)求導,根據f′(2)=0,f(2)=c-16,即可求得a,b值;
(2)由(1)求出f(x)的極大值,由極大值為28,可求出c值,然后求出f(-3),f(3),及函數在區(qū)間[-3,3]上的極值,其中最大者最大值.
解答:解:(1)因為f(x)=ax3+bx+c,故f′(x)=3ax2+b,
由于f(x)在點x=2處取得極值,故有
f′(2)=0
f(2)=c-16
,即
12a+b=0
8a+2b+c=c-16
,
化簡得
12a+b=0
4a+b=-8
,解得
a=1
b=-12

(2)由(1)知f(x)=x3-12x+c,f′(x)=3x2-12,
令f′(x)=0,得x=2或x=-2,
當x∈(-∞,-2)時,f′(x)>0,f(x)在∈(-∞,-2)上為增函數;當x∈(-2,2)時,f′(x)<0,f(x)在(-2,2)上為減函數;
當x∈(2,+∞)時,f′(x)>0,f(x)在(2,+∞)上為增函數.
由此可知f(x)在x=-2處取得極大值f(-2)=16+c,f(x)在x=2處取得極小值f(2)=-16+c.
由題意知16+c=28,解得c=12.此時,f(-3)=21,f(3)=3,f(2)=-4,
所以f(x)在[-3,3]上的最大值為28.
點評:本題主要考查函數的導數與函數的極值、最值之間的關系,屬于導數應用問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案