【題目】已知函數(shù)

1)若有兩個零點,求a的取值范圍;

2)設,直線的斜率為k,若恒成立,求a的取值范圍.

【答案】(1)(2)

【解析】

(1)求導得,,可得上是增函數(shù),不可能有兩個零點,,利用導數(shù)可以求得函數(shù)在定義域內的最大值為,,解得.然后根據(jù), 得到上有1個零點;根據(jù),,得到上有1個零點,可得的取值范圍.

(2)利用斜率公式將恒成立,轉化為,上是增函數(shù),再求導后,分離變量變成,最后用基本不等式求得最小值,代入即得.

1,

①當時,上是增函數(shù),不可能有兩個零點;

②當時,在區(qū)間上,;在區(qū)間上,

是增函數(shù),在是減函數(shù),,解得,此時,且,∴上有1個零點;

,則,∴上單調遞增,

,即,∴上有1個零點.

a的取值范圍是

2)由題意得,

,

上是增函數(shù),

上恒成立,∴

,∴,當且僅當時,即取等號,∴

a的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形中,,,將沿折起,使平面平面,得到幾何體,如圖2所示,

(1)求證:平面;

(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201911日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用 ②子女教育費用 ③繼續(xù)教育費用 ④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月共扣除2000 ②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內容如下:

級數(shù)

全月應納稅所得額

稅率

1

不超過3000元的部分

3%

2

超過3000元至12000元的部分

10%

3

超過12000元至25000元的部分

20%

現(xiàn)有李某月收入18000元,膝下有兩名子女,需要贍養(yǎng)老人,(除此之外,無其它專項附加扣除,專項附加扣除均按標準的100%扣除),則李某月應繳納的個稅金額為(

A.590B.690C.790D.890

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:x∈R,ax2﹣2ax+1>0,命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則P是q的(  )

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大學的生活豐富多彩,很多學生除了學習本專業(yè)的必修課外,還會選擇一些選修課來充實自已.甲同學調查了自己班上的名同學學習選修課的情況,并作出如下表格:

每人選擇選修課科數(shù)

頻數(shù)

1)求甲同學班上人均學習選修課科數(shù):

2)甲同學和乙同學的某門選修課是在同一個班,且該門選修課開始上課的時間是早上,已知甲同學每次上課都會在之間的任意時刻到達教室,乙同學每次上課都會在之間的任意時刻到達教室,求連續(xù)天內,甲同學比乙同學早到教室的天數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2axb,g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.

(1)求a,b,c,d的值;

(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以橢圓的中心O為圓心,以為半徑的圓稱為該橢圓的伴隨.已知橢圓的離心率為,且過點

1)求橢圓C及其伴隨的方程;

2)過點伴隨的切線l交橢圓CAB兩點,記為坐標原點)的面積為,將表示為m的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體中,,.

(Ⅰ)求證:

(Ⅱ)若與平面所成的角為,點的中點,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線與曲線,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)寫出曲線的極坐標方程;

2)在極坐標系中,已知,的公共點分別為,當時,求的值.

查看答案和解析>>

同步練習冊答案