【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,過點的直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為,記直線與曲線分別交于兩點.

(1)求曲線的直角坐標方程;

(2)證明:成等比數(shù)列.

【答案】(1), .(2)見解析.

【解析】

1)曲線C的極坐標方程左右兩邊同乘 ,再利用 可求其直角坐標方程;消參可求直線的普通方程;

(2)把直線的參數(shù)方程和曲線C的直角坐標方程聯(lián)立,利用韋達定理分別表示 ,利用等比中項法即可證明。

(1)由,得 ,

所以曲線的直角坐標方程為

,消去參數(shù),得直線的普通方程為.

(2)證明:將直線的參數(shù)方程代入中,得.

兩點對應的參數(shù)分別為,則有,,

所以.

因為,

所以,成等比數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:的離心率為,點在橢圓C上.

1求橢圓C的方程;

2設動直線與橢圓C有且僅有一個公共點,判斷是否存在以原點O為圓心的圓,滿足此圓與相交兩點兩點均不在坐標軸上,且使得直線 的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調(diào)性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于AB兩點,已知A,B的橫坐標分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果一個三位數(shù)的各位數(shù)字互不相同,且各數(shù)字之和等于10,則稱此三位數(shù)為“十全十美三位數(shù)”(如235),任取一個“十全十美三位數(shù)”,該數(shù)為奇數(shù)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了200人進行抽樣分析,得到如表(單位:人):

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(Ⅱ)①現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出3人贈送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設曲線交于點,曲線軸交于點,求線段的中點到點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形中,,平面平面.

(1)求證:平面平面;

(2)若,求與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案