12.某農戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設種植黃瓜和韭菜的產量,成本和售價如下表:
 年產量/畝年種植成本/畝 每噸售價 
 黃瓜 4噸 1.2萬元 0.55萬元
 韭菜6噸  0.9萬元 0.3萬元
分別用x,y表示黃瓜和韭菜的種植面積(單位:畝)
(Ⅰ)用x,y列出滿足條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別種植黃瓜和韭菜各對少畝能夠使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大?并求出此最大利潤.

分析 (Ⅰ)先設黃瓜和韭菜的種植面積分別為x,y畝,寫出約束條件,畫出圖象即可,
(Ⅱ)設出目標函數(shù),欲求種植總利潤最大,即求可行域中的最優(yōu)解,將目標函數(shù)看成是一條直線,分析目標函數(shù)Z與直線截距的關系,進而求出最優(yōu)解.

解答 解:(Ⅰ)設黃瓜和韭菜的種植面積分別為x,y畝,
則目標函數(shù)為z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.
線性約束條件為 $\left\{\begin{array}{l}{x+y≤50}\\{1.2x+0.9y≤54}\\{x≥0}\\{y≥0}\end{array}\right.$即 $\left\{\begin{array}{l}{x+y≤50}\\{4x+3y≤180}\\{x≥0}\\{y≥0}\end{array}\right.$,作出不等式組表示的可行域,如圖所示:
(Ⅱ)設總利潤為z萬元,由圖象易求得點 A(0,50),B(30,20),C(0,45).
平移直線z=x+0.9y,可知當直線z=x+0.9y 經過點B(30,20),即x=30,y=20時,z取得最大值,且Zmax=48(萬元).
故黃瓜和韭菜的種植面積應該分別是30畝、20畝時,利潤最大.

點評 在解決線性規(guī)劃的應用題時,其步驟為:①分析題目中相關量的關系,列出不等式組,即約束條件②由約束條件畫出可行域③分析目標函數(shù)Z與直線截距之間的關系④使用平移直線法求出最優(yōu)解⑤還原到現(xiàn)實問題中.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知a,b,c分別是△ABC的內角A,B,C所對的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等差數(shù)列{an}的公差d不為0,且a7,a3,a1是等比數(shù)列{bn}從前到后的連續(xù)三項.
(1)若a1=4,求等差數(shù)列{an}的前10項的和S10;
(2)若等比數(shù)列{bn}的前100項的和T100=150,求b2+b4+b6+…+b100的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知定義域為R的函數(shù)f(x)滿足:當x∈(-1,1]時,f(x)=$\left\{\begin{array}{l}{-\frac{x}{x+1},-1<x≤0}\\{{2}^{2-x}-2,0<x≤1}\end{array}\right.$且f(x+2)=f(x)對任意的x∈R恒成立.若函數(shù)g(x)=f(x)-m(x+1)在區(qū)間[-1,5]內有6個零點,則實數(shù)m的取值范圍是[$\frac{2}{5}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.曲線f(x)=acosx與曲線g(x)=x2+bx+1在交點(0,x0)有公切線,則b-a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點F是拋物線y2=8x焦點,兩曲線的一個公共點為P,且|PF|=5,則該雙曲線的離心率為(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,則輸出的結果是( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)設全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.求A∪B,∁U(A∩B);
(2)化簡求值:$\sqrt{6\frac{1}{4}}$+$\root{3}{{8}^{2}}$+0.027${\;}^{-\frac{2}{3}}$×(-$\frac{1}{3}$)-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某個體服裝店經營某種服裝在某周內獲得利潤y(單位:元)與該周每天銷售這種服裝件數(shù)x之間有如下一組數(shù)據:
x3456789
y66697381899091
已知$\sum_{i=1}^7{x_i^2=280,}\sum_{i=1}^7{{x_i}{y_i}=3487}$
(1)求$\overline x,\overline y$;   
(2)求純利潤y與每天銷售件數(shù)x的回歸方程;
(3)估計每天銷售10件這種服裝時,純利潤是多少元?

查看答案和解析>>

同步練習冊答案