年產量/畝 | 年種植成本/畝 | 每噸售價 | |
黃瓜 | 4噸 | 1.2萬元 | 0.55萬元 |
韭菜 | 6噸 | 0.9萬元 | 0.3萬元 |
分析 (Ⅰ)先設黃瓜和韭菜的種植面積分別為x,y畝,寫出約束條件,畫出圖象即可,
(Ⅱ)設出目標函數(shù),欲求種植總利潤最大,即求可行域中的最優(yōu)解,將目標函數(shù)看成是一條直線,分析目標函數(shù)Z與直線截距的關系,進而求出最優(yōu)解.
解答 解:(Ⅰ)設黃瓜和韭菜的種植面積分別為x,y畝,
則目標函數(shù)為z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.
線性約束條件為 $\left\{\begin{array}{l}{x+y≤50}\\{1.2x+0.9y≤54}\\{x≥0}\\{y≥0}\end{array}\right.$即 $\left\{\begin{array}{l}{x+y≤50}\\{4x+3y≤180}\\{x≥0}\\{y≥0}\end{array}\right.$,作出不等式組表示的可行域,如圖所示:
(Ⅱ)設總利潤為z萬元,由圖象易求得點 A(0,50),B(30,20),C(0,45).
平移直線z=x+0.9y,可知當直線z=x+0.9y 經過點B(30,20),即x=30,y=20時,z取得最大值,且Zmax=48(萬元).
故黃瓜和韭菜的種植面積應該分別是30畝、20畝時,利潤最大.
點評 在解決線性規(guī)劃的應用題時,其步驟為:①分析題目中相關量的關系,列出不等式組,即約束條件②由約束條件畫出可行域③分析目標函數(shù)Z與直線截距之間的關系④使用平移直線法求出最優(yōu)解⑤還原到現(xiàn)實問題中.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com