A. | (-∞,-2] | B. | (-∞,-$\frac{25}{12}$] | C. | (-∞,50] | D. | (-∞,-1] |
分析 根據(jù)題意可得,x=-3和x=-2是方程ax2+(b-8)x-a-ab=0的兩個(gè)根,求出a=-3,b=5;-3x2+5x+c≤0在[1,4]上恒成立即:c≤3x2-5x在[1,4]上恒成立;
解答 解:根據(jù)題意可得,x=-3和x=-2是方程ax2+(b-8)x-a-ab=0的兩個(gè)根,且a<0;
利用韋達(dá)定理可得-3+2=-$\frac{8-b}{a}$,-3×2=$\frac{-a-ab}{a}$,
求得:a=-3,b=5;
故函數(shù)f(x)=-3$(x+\frac{1}{2})^{2}$+$\frac{75}{4}$,
不等式ax2+bx+c≤0即:-3x2+5x+c≤0,
-3x2+5x+c≤0在[1,4]上恒成立即:c≤3x2-5x在[1,4]上恒成立;
令h(x)=3x2-5x,x∈[1,4],h(x)的最小值為:h(1)=-2;
故c≤-2.
故選:A.
點(diǎn)評(píng) 本題主要考查了二次函數(shù)根與韋達(dá)定理、分類參數(shù)法求函數(shù)最值等知識(shí)點(diǎn),屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 320 | B. | 160 | C. | 96 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{\sqrt{14}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在區(qū)間(-3,1)內(nèi)y=f(x)是增函數(shù) | B. | 在區(qū)間(1,3)內(nèi)y=f(x)是減函數(shù) | ||
C. | 在區(qū)間(4,5)內(nèi)y=f(x)是增函數(shù) | D. | 在x=2時(shí),y=f(x)取得極小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com