13.如圖,F(xiàn)1,F(xiàn)2是雙曲線C1:x2-$\frac{y^2}{3}$=1與橢圓C2的公共焦點,點A是C1,C2在第一象限的公共點,若|F1F2|=|F1A|,則C2的離心率是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{2}{5}$D.$\frac{2}{5}$

分析 利用雙曲線與橢圓的定義及其離心率計算公式即可得出.

解答 解:由雙曲線C1:x2-$\frac{y^2}{3}$=1可得a1=1,b1=$\sqrt{3}$,c=2.
橢圓C2中,|F1A|-|F2A|=2a1=2,|F1A|+|F2A|=2a,
∴2|F1A|=2a+2
∵|F1F2|=|F1A|=2c=4,
∴2×4=2a+2,解得a=3.
則C2的離心率=$\frac{c}{a}$=$\frac{2}{3}$.
故選B.

點評 本題考查了雙曲線與橢圓的定義及其離心率計算公式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)定義在R上的函數(shù)f(x)滿足:對任意的x,y∈R均有f(x+y)=f(x)+f(y)成立且當x>0時,f(x)>0
(1)判斷f(x)的奇偶性并給出證明;
(2)判斷f(x)的單調(diào)性并給出證明;
(3)若f(1)=1,解關(guān)于x的不等式f(x2+2x)+f(1-x)>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=x3-x-1的零點所在的區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知定義域為R上的奇函數(shù)f(x)=a-$\frac{4}{{{3^x}+1}}$.
(1)求a的值;
(2)判斷并證明函數(shù)f(x)的單調(diào)性;
(3)若對于任意的m∈R,不等式f(-3m+3)+f(6m-8)<0恒成立.求m的取范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知M={y|y=x2-4,x∈R},P={x|2≤x≤4}.則M與P的關(guān)系是(  )
A.M=PB.M∈PC.M∩P=∅D.M?P

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知直線l1:y=kx-1與雙曲線x2-y2=1的左支交于A、B兩點.
(1)求斜率k的取值范圍;
(2)若直線l2經(jīng)過點P(-2,0)及線段AB的中點Q且l2在y軸上截距為-16,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列函數(shù)值域是(0,+∞)的是(  )
A.y=$\frac{1}{{5}^{2-x}-1}$B.y=($\frac{1}{2}$)1-2xC.y=$\sqrt{(\frac{1}{2})^{x}-1}$D.y=$\sqrt{1-{2}^{x}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{{2}^{x}+1}$-$\frac{1}{2}$.
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)解不等式f(f(x))+f($\frac{3}{8}$)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上.
(1)求證:D1E⊥A1D;
(2)是否存在點E,使得${V_{B-CE{D_1}}}=\frac{1}{9}$?若存在,求出AE的長,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案