5.下列函數(shù)值域是(0,+∞)的是( 。
A.y=$\frac{1}{{5}^{2-x}-1}$B.y=($\frac{1}{2}$)1-2xC.y=$\sqrt{(\frac{1}{2})^{x}-1}$D.y=$\sqrt{1-{2}^{x}}$

分析 依次對(duì)各項(xiàng)進(jìn)行求解值域,根據(jù)題意選擇不同的求法.

解答 解:對(duì)于A:y=$\frac{1}{{5}^{2-x}-1}$,∵52-x>0,∴52-x-1>-1且52-x-1≠0,∴y∈(-1,1),故A不對(duì).
對(duì)于B:y=($\frac{1}{2}$)1-2x,∵1-2x∈R,∴y∈(0,+∞),故B對(duì).
對(duì)于C:y=$\sqrt{(\frac{1}{2})^{x}-1}$,∵$(\frac{1}{2})^{x}=1$時(shí),y=0,∴y∈[0,+∞),故C不對(duì).
對(duì)于D:$y=\sqrt{1-{2}^{x}}$,∵2x>0,0≤1-2x<1,∴y∈[0,1),故D不對(duì).
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.滿足{1,2}?M⊆{1,2,3,4,5}的集合M的個(gè)數(shù)為( 。
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.sin$\frac{π}{6}$=( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,F(xiàn)1,F(xiàn)2是雙曲線C1:x2-$\frac{y^2}{3}$=1與橢圓C2的公共焦點(diǎn),點(diǎn)A是C1,C2在第一象限的公共點(diǎn),若|F1F2|=|F1A|,則C2的離心率是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.以下四個(gè)關(guān)于圓錐曲線的命題中
①設(shè)A,B為兩個(gè)定點(diǎn),k為非零常數(shù),|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
③設(shè)定圓C上一定點(diǎn)A作圓的動(dòng)點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),則動(dòng)點(diǎn)P的軌跡為橢圓;
④過點(diǎn)(0,1)作直線,使它與拋物線y2=4x僅有一個(gè)公共點(diǎn),這樣的直線有3條;
其中真命題的序號(hào)為②④.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex(x2+ax+a).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:當(dāng)a≥4時(shí),函數(shù)f(x)存在最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x+a)ex(x>-3),其中a∈R.
(1)若曲線y=f(x)在點(diǎn)A(0,a)處的切線l與直線y=|2a-2|x平行,求l的方程;
(2)討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.x>1,則函數(shù)y=x+$\frac{1}{x-1}$的值域是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$cosα=\frac{2}{3}$,0<α<π,求$cos(α-\frac{π}{6})$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案