【題目】已知△ABC中,A(1,3),BC邊所在的直線方程為y﹣1=0,AB邊上的中線所在的直線方程為x﹣3y+4=0. (Ⅰ)求B,C點的坐標;
(Ⅱ)求△ABC的外接圓方程.

【答案】解:(Ⅰ)由 解得C(﹣1,1); 設B(x0 , 1),則AB的中點 ,由點D在AB邊的中線上得 ,解得B(3,1)
(Ⅱ)法一:易知AB⊥AC,故△ABC的外接圓的直徑為BC,圓心為BC的中點(1,1),
又半徑
∴所求外接圓的方程為(x﹣1)2+(y﹣1)2=4
法二:設△ABC的外接圓方程為x2+y2+Dx+Ey+F=0則將A(1,3),B(1,﹣1),C(﹣1,0)三點
的坐標代入可得
解得D=E=F=﹣2,
即△ABC的外接圓方程為x2+y2﹣2x﹣2y﹣2=0
【解析】(Ⅰ)利用解方程組的方法,求B,C點的坐標;(Ⅱ)法一:求出圓心與半徑;法二:,利用圓的一般方程,即可求△ABC的外接圓方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=log2(ax2﹣2x+2)的定義域為Q.
(1)若a>0且[2,3]∩Q=,求實數(shù)a的取值范圍;
(2)若[2,3]Q,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx(a∈R).
(1)當a=1時,求f(x)的最小值;
(2)若存在x∈[1,3],使 +lnx=2成立,求a的取值范圍;
(3)若對任意的x∈[1,+∞),有f(x)≥f( )成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠組織工人技能培訓,其中甲、乙兩名技工在培訓時進行的5次技能測試中的成績?nèi)鐖D莖葉圖所示. (Ⅰ)現(xiàn)要從中選派一人參加技能大賽,從這兩名技工的測試成績分析,派誰參加更合適;
(Ⅱ)若將頻率視為概率,對選派參加技能大賽的技工在今后三次技能大賽的成績進行預測,記這三次成績中高于85分的次數(shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是(
A. =(0,0), =(1,﹣2)
B. =(﹣1,2), =(2,﹣4)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(6,9)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)站對“愛飛客”飛行大會的日關注量x(萬人)與日點贊量y(萬次)進行了統(tǒng)計對比,得到表格如下:

x

3

5

6

7

9

y

2

3

3

4

5

由散點圖象知,可以用回歸直線方程 來近似刻畫它們之間的關系.
(Ⅰ)求出y關于x的回歸直線方程,并預測日關注量為10萬人時的日點贊量;
(Ⅱ)一個三口之家參加“愛飛客”親子游戲,游戲規(guī)定:三人依次從裝有3個白球和2個紅球的箱子中不放回地各摸出一個球,大人摸出每個紅球得獎金10元,小孩摸出1個紅球得獎金50元.求該三口之家所得獎金總額不低于50元的概率.
參考公式:b= ; 參考數(shù)據(jù): =200, =112.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列函數(shù)中,最小值為2的是(
A.y=2x+2x
B.y=sinx+ (0<x<
C.y=x+
D.y=log3x+ (1<x<3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}滿足 ,n∈N* . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{an}的前n項和為Sn , 若不等式Sn>kan﹣2對一切n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83.
(1)求x和y的值;
(2)計算甲班7位學生成績的方差s2
(3)從成績在90分以上的學生中隨機抽取兩名學生,求甲班至少有一名學生的概率.

查看答案和解析>>

同步練習冊答案