【題目】已知O為原點(diǎn),拋物線的準(zhǔn)線與y軸的交點(diǎn)為H,P為拋物線C上橫坐標(biāo)為4的點(diǎn),已知點(diǎn)P到準(zhǔn)線的距離為5.
(1)求C的方程;
(2)過(guò)C的焦點(diǎn)F作直線l與拋物線C交于A,B兩點(diǎn),若以AH為直徑的圓過(guò)B,求的值.
【答案】(1);(2)4.
【解析】
(1)由題意結(jié)合橢圓的性質(zhì)可得,求得后即可得解;
(2)設(shè),,直線AB的方程為,聯(lián)立方程組結(jié)合韋達(dá)定理可得,由圓的性質(zhì)、直線垂直的性質(zhì)可得,進(jìn)而可得,再由拋物線的性質(zhì)即可得解.
(1)由題意點(diǎn),拋物線的準(zhǔn)線方程為,
則,解得或(舍),
∴拋物線方程為;
(2)由題意拋物線的焦點(diǎn)為,準(zhǔn)線方程為,,
由題意可知,直線AB的斜率存在且不為0,
設(shè),,直線AB的方程為,
代入拋物線方程可得,,
∴,,①
又,,
由可得,∴,
整理得,即,
∴,②
把①代入②得,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠疫情發(fā)生后,酒精使用量大增,某生產(chǎn)企業(yè)調(diào)整設(shè)備,全力生產(chǎn)與兩種不同濃度的酒精,按照計(jì)劃可知在一個(gè)月內(nèi),酒精日產(chǎn)量(單位:噸)與時(shí)間n(且)成等差數(shù)列,且,.又知酒精日產(chǎn)量所占比重與時(shí)間n成等比數(shù)列,酒精日產(chǎn)量所占比重與時(shí)間n的關(guān)系如下表():
酒精日產(chǎn)量所占比重 | …… | |||
時(shí)間n | 1 | 2 | 3 | …… |
(1)求,的通項(xiàng)公式;
(2)若,求前n天
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),,,其中e為自然對(duì)數(shù)的底數(shù)().
(1)當(dāng)時(shí),求在處的切線方程;
(2)設(shè),求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù),其中e=2.71828…為自然對(duì)數(shù)的底數(shù).
(Ⅰ)證明:函數(shù)在上有唯一零點(diǎn);
(Ⅱ)記x0為函數(shù)在上的零點(diǎn),證明:
(。;
(ⅱ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的學(xué)生積極參加體育鍛煉,其中有96%的學(xué)生喜歡足球或游泳,60%的學(xué)生喜歡足球,82%的學(xué)生喜歡游泳,則該中學(xué)既喜歡足球又喜歡游泳的學(xué)生數(shù)占該校學(xué)生總數(shù)的比例是( )
A.62%B.56%
C.46%D.42%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,且過(guò)點(diǎn)A(2,1).
(1)求C的方程:
(2)點(diǎn)M,N在C上,且AM⊥AN,AD⊥MN,D為垂足.證明:存在定點(diǎn)Q,使得|DQ|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司采購(gòu)了一批零件,為了檢測(cè)這批零件是否合格,從中隨機(jī)抽測(cè)120個(gè)零件的長(zhǎng)度(單位:分米),按數(shù)據(jù)分成,,,,,這6組,得到如圖所示的頻率分布直方圖,其中長(zhǎng)度大于或等于1.59分米的零件有20個(gè),其長(zhǎng)度分別為1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,1.68,1.69,1.69,1.71,1.72,1.74,以這120個(gè)零件在各組的長(zhǎng)度的頻率估計(jì)整批零件在各組長(zhǎng)度的概率.
(1)求這批零件的長(zhǎng)度大于1.60分米的頻率,并求頻率分布直方圖中,,的值;
(2)若從這批零件中隨機(jī)選取3個(gè),記為抽取的零件長(zhǎng)度在的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;
(3)若變量滿(mǎn)足且,則稱(chēng)變量滿(mǎn)足近似于正態(tài)分布的概率分布.如果這批零件的長(zhǎng)度(單位:分米)滿(mǎn)足近似于正態(tài)分布的概率分布,則認(rèn)為這批零件是合格的將順利被簽收;否則,公司將拒絕簽收.試問(wèn),該批零件能否被簽收?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過(guò)點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com