【題目】某公司采購(gòu)了一批零件,為了檢測(cè)這批零件是否合格,從中隨機(jī)抽測(cè)120個(gè)零件的長(zhǎng)度(單位:分米),按數(shù)據(jù)分成,,,6組,得到如圖所示的頻率分布直方圖,其中長(zhǎng)度大于或等于1.59分米的零件有20個(gè),其長(zhǎng)度分別為1.591.59,1.61,1.611.62,1.631.63,1.64,1.65,1.651.65,1.65,1.661.67,1.68,1.691.69,1.711.72,1.74,以這120個(gè)零件在各組的長(zhǎng)度的頻率估計(jì)整批零件在各組長(zhǎng)度的概率.

1)求這批零件的長(zhǎng)度大于1.60分米的頻率,并求頻率分布直方圖中,,的值;

2)若從這批零件中隨機(jī)選取3個(gè),記為抽取的零件長(zhǎng)度在的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;

3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果這批零件的長(zhǎng)度(單位:分米)滿足近似于正態(tài)分布的概率分布,則認(rèn)為這批零件是合格的將順利被簽收;否則,公司將拒絕簽收.試問(wèn),該批零件能否被簽收?

【答案】1,,;(2)分布列見(jiàn)解析,2.1;(3)能被該公司簽收.

【解析】

1)根據(jù)120件樣本零件中長(zhǎng)度大于1.60分米的共有18件即可求出頻率,根據(jù)所給數(shù)據(jù)分別求出,兩組的頻率可得m,n,再根據(jù)頻率之和為1求出t即可;

2)由題意從這批零件中隨機(jī)選取1件,長(zhǎng)度在的概率,且服從二項(xiàng)分布,即可求解;、

3)根據(jù)題意,驗(yàn)證零件數(shù)據(jù)對(duì)于是否成立即可求解.

1)由題意可知120件樣本零件中長(zhǎng)度大于1.60分米的共有18件,

則這批零件的長(zhǎng)度大于1.60分米的頻率為

為零件的長(zhǎng)度,則,

,

,

,.

2)由(1)可知從這批零件中隨機(jī)選取1件,長(zhǎng)度在的概率.

且隨機(jī)變量服從二項(xiàng)分布,

,

故隨機(jī)變量的分布列為

0

1

2

3

0.027

0.189

0.441

0.343

(或.

3)由題意可知,,

;

,

因?yàn)?/span>,

所以這批零件的長(zhǎng)度滿足近似于正態(tài)分布的概率分布.

應(yīng)認(rèn)為這批零件是合格的,將順利被該公司簽收.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,四點(diǎn),,中恰有三個(gè)點(diǎn)在橢圓C上,左、右焦點(diǎn)分別為F1、F2

1)求橢圓C的方程;

2)過(guò)左焦點(diǎn)F1且不平行坐標(biāo)軸的直線l交橢圓于P、Q兩點(diǎn),若PQ的中點(diǎn)為N,O為原點(diǎn),直線ON交直線x=﹣3于點(diǎn)M,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為原點(diǎn),拋物線的準(zhǔn)線與y軸的交點(diǎn)為H,P為拋物線C上橫坐標(biāo)為4的點(diǎn),已知點(diǎn)P到準(zhǔn)線的距離為5.

1)求C的方程;

2)過(guò)C的焦點(diǎn)F作直線l與拋物線C交于AB兩點(diǎn),若以AH為直徑的圓過(guò)B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,AB//CD,是以為斜邊的等腰直角三角形,且平面平面ABCD,點(diǎn)F滿足,.

1)試探究為何值時(shí),CE//平面BDF,并給予證明;

2)在(1)的條件下,求直線AB與平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn),點(diǎn)在橢圓.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)經(jīng)過(guò)圓上一動(dòng)點(diǎn)作橢圓的兩條切線,切點(diǎn)分別記為,,直線,分別與圓相交于異于點(diǎn),兩點(diǎn).

i)當(dāng)直線,的斜率都存在時(shí),記直線,的斜率分別為,.求證:;

ii)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)展“會(huì)員”、提供優(yōu)惠,成為不少實(shí)體店在網(wǎng)購(gòu)沖擊下吸引客流的重要方式.某連鎖店為了吸引會(huì)員,在2019年春節(jié)期間推出一系列優(yōu)惠促銷活動(dòng).抽獎(jiǎng)返現(xiàn)便是針對(duì)“白金卡會(huì)員”、“金卡會(huì)員”、“銀卡會(huì)員”、“基本會(huì)員”不同級(jí)別的會(huì)員享受不同的優(yōu)惠的一項(xiàng)活動(dòng):“白金卡會(huì)員”、“金卡會(huì)員”、“銀卡會(huì)員”、“基本會(huì)員”分別有4次、3次、2次、1次抽獎(jiǎng)機(jī)會(huì).抽獎(jiǎng)機(jī)如圖:抽獎(jiǎng)?wù)叩谝淮伟聪鲁楠?jiǎng)鍵,在正四面體的頂點(diǎn)出現(xiàn)一個(gè)小球,再次按下抽獎(jiǎng)鍵,小球以相等的可能移向鄰近的頂點(diǎn)之一,再次按下抽獎(jiǎng)鍵,小球又以相等的可能移向鄰近的頂點(diǎn)之一……每一個(gè)頂點(diǎn)上均有一個(gè)發(fā)光器,小球在某點(diǎn)時(shí),該點(diǎn)等可能發(fā)紅光或藍(lán)光,若出現(xiàn)紅光則獲得2個(gè)單位現(xiàn)金,若出現(xiàn)藍(lán)光則獲得3個(gè)單位現(xiàn)金.

1)求“銀卡會(huì)員”獲得獎(jiǎng)金的分布列;

2表示第次按下抽獎(jiǎng)鍵,小球出現(xiàn)在點(diǎn)處的概率.

,,的值;

寫(xiě)出關(guān)系式,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在新中國(guó)成立70周年國(guó)慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國(guó)的熱愛(ài)之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為),M為該曲線上的任意一點(diǎn).

1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);

2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,且,.

(1)證明:平面平面;

(2)有一動(dòng)點(diǎn)在底面的四條邊上移動(dòng),求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐朝的狩獵景象浮雕銀杯如圖1所示.其浮雕臨摹了國(guó)畫(huà)、漆繪和墓室壁畫(huà),體現(xiàn)了古人的智慧與工藝.它的盛酒部分可以近似地看作是半球與圓柱的組合體(假設(shè)內(nèi)壁表面光滑,忽略杯壁厚度),如圖2所示.已知球的半徑為R,酒杯內(nèi)壁表面積為,設(shè)酒杯上部分(圓柱)的體積為,下部分(半球)的體積為,則

A.2B.C.1D.

查看答案和解析>>

同步練習(xí)冊(cè)答案