【題目】如圖,在四棱錐中,底面ABCD為直角梯形,AB//CD,是以為斜邊的等腰直角三角形,且平面平面ABCD,點F滿足,.

1)試探究為何值時,CE//平面BDF,并給予證明;

2)在(1)的條件下,求直線AB與平面BDF所成角的正弦值.

【答案】1;證明見解析;(2.

【解析】

1)連接ACBD于點M,連接MF,若,則有CE//平面BDF,根據(jù),,求出并證明;

2)取AB的中點O,連接EOOD,則.又因為平面平面ABCD,可證得兩兩垂直,建系設(shè)點,用空間直角坐標(biāo)法求出直線AB與平面BDF所成角的正弦值.

解:(1)當(dāng)時,CE//平面FBD.

證明如下:連接AC,交BD于點M,連接MF.,因為AB//CD,

所以AMMC=ABCD=21,又,所以FAEF=21.

所以AMMC=AFEF=21,所以MF//CE.

平面BDF,平面BDF,所以CE//平面BDF.

2)取AB的中點O,連接EO,OD,則.

又因為平面平面ABCD,平面平面平面ABE,

所以平面ABCD,因為平面ABCD,所以.

,及AB=2CD,AB//CD,得,

OB,OD,OE兩兩垂直,建立如圖所示的空間直角坐標(biāo)系.

因為為等腰直角三角形,AB=2BC=2CD,

所以OA=OB=OD=OE,設(shè)OB=1,

所以.

所以,

,所以.

設(shè)平面BDF的法向量為,則有,所以,

,得.

設(shè)直線AB與平面BDF所成的角為,

.

即直線AB與平面BDF所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自新冠肺炎疫情發(fā)生以來,某社區(qū)積極防范,并利用網(wǎng)絡(luò)對本社區(qū)居民進行新冠肺炎防御知識講座,為了解該社區(qū)居民對防御知識的掌握情況,隨機調(diào)查了該社區(qū)100人,統(tǒng)計得到如下列聯(lián)表:

1)請根據(jù)2x2列聯(lián)表,判斷是否有95%的把握認為防御知識掌握情況與年齡有關(guān);

2)為了進一步提高該社區(qū)的防御意識,該社區(qū)采用分層抽樣的方法,從調(diào)查的完全掌握的居民中抽取10人,再從這10人中隨機選取2人作為下一次講座的講解員,設(shè)X為這2人中年齡小于或等于50歲的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,其中e為自然對數(shù)的底數(shù)(.

1)當(dāng)時,求處的切線方程;

2)設(shè),求的單調(diào)區(qū)間;

3)當(dāng)時,恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的學(xué)生積極參加體育鍛煉,其中有96%的學(xué)生喜歡足球或游泳,60%的學(xué)生喜歡足球,82%的學(xué)生喜歡游泳,則該中學(xué)既喜歡足球又喜歡游泳的學(xué)生數(shù)占該校學(xué)生總數(shù)的比例是(

A.62%B.56%

C.46%D.42%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,且過點A21).

1)求C的方程:

2)點MNC上,且AMANADMN,D為垂足.證明:存在定點Q,使得|DQ|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為加強對銷售員的考核與管理,從銷售部門隨機抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬元)分別為:3.35,3.35,3.383.41,3.43,3.44,3.463.48,3.513.54,3.56,3.56,3.57,3.59,3.60,3.643.64,3.673.70,3.70.

(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過3.52萬元的組員不低于全組人數(shù)的,則對該銷售小組給予獎勵,否則不予獎勵.試判斷該公司是否需要對抽取的銷售小組發(fā)放獎勵;

(Ⅱ)從該銷售小組月均銷售額超過3.60萬元的銷售員中隨機抽取2名組員,求選取的2名組員中至少有1名月均銷售額超過3.68萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司采購了一批零件,為了檢測這批零件是否合格,從中隨機抽測120個零件的長度(單位:分米),按數(shù)據(jù)分成,,,6組,得到如圖所示的頻率分布直方圖,其中長度大于或等于1.59分米的零件有20個,其長度分別為1.59,1.591.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.651.66,1.67,1.68,1.69,1.69,1.71,1.721.74,以這120個零件在各組的長度的頻率估計整批零件在各組長度的概率.

1)求這批零件的長度大于1.60分米的頻率,并求頻率分布直方圖中,,的值;

2)若從這批零件中隨機選取3個,記為抽取的零件長度在的個數(shù),求的分布列和數(shù)學(xué)期望;

3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果這批零件的長度(單位:分米)滿足近似于正態(tài)分布的概率分布,則認為這批零件是合格的將順利被簽收;否則,公司將拒絕簽收.試問,該批零件能否被簽收?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地準(zhǔn)備在山谷中建一座橋梁,橋址位置的豎直截面圖如圖所示:谷底O在水平線MN上,橋ABMN平行,為鉛垂線(AB).經(jīng)測量,左側(cè)曲線AO上任一點DMN的距離()D的距離a()之間滿足關(guān)系式;右側(cè)曲線BO上任一點FMN的距離()F的距離b()之間滿足關(guān)系式.已知點B的距離為40.

1)求橋AB的長度;

2)計劃在谷底兩側(cè)建造平行于的橋墩CDEF,且CE80米,其中C,EAB(不包括端點).橋墩EF每米造價k(萬元)、橋墩CD每米造價(萬元)(k>0).為多少米時,橋墩CDEF的總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人堅持跑步鍛煉,根據(jù)他最近20周的跑步數(shù)據(jù),制成如下條形圖:

根據(jù)條形圖判斷,下列結(jié)論正確的是(

A.周跑步里程逐漸增加

B.20周跑步里程平均數(shù)大于30km

C.20周跑步里程中位數(shù)大于30km

D.10周的周跑步里程的極差大于后10周的周跑步里程的極差

查看答案和解析>>

同步練習(xí)冊答案