【題目】如圖,已知橢圓 (a>b>0)的離心率為 ,以該橢圓上的點和橢圓的左、右焦點F1 , F2為頂點的三角形的周長為 .一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.

(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2 , 證明k1k2=1;
(3)探究 是否是個定值,若是,求出這個定值;若不是,請說明理由.

【答案】
(1)解:設橢圓的半焦距為c,由題意知: ,2a+2c=4( +1)

解得a=2 ,c=2,

又a2=b2+c2,解得b=2.

故橢圓的標準方程為

由題意設等軸雙曲線的標準方程為 (m>0),

因為等軸雙曲線的頂點是橢圓的焦點.

所以m=2,

因此雙曲線的標準方程為


(2)證明:設P(x0,y0),F(xiàn)1(﹣2,0),F(xiàn)2(2,0)

則k1= ,

因為點P在雙曲線x2﹣y2=4上,所以

因此 ,

故k1k2=1.


(3)解:設A(x1,y1),B(x2,y2),

由于PF1的方程為y=k1(x+2),將其代入橢圓方程得

所以 ,

所以 = =

同理可得

又k1k2=1,

所以 =

恒成立,即 是定值


【解析】(1)由橢離心率為 ,以該橢圓上的點和橢圓的左、右焦點F1 , F2為頂點的三角形的周長為 ,求出a,b,從而能求出橢圓的標準方程,設等軸雙曲線的標準方程為 ,由等軸雙曲線的頂點是橢圓的焦點,求出m,從而能求出雙曲線的標準方程.(2)設P(x0 , y0),F(xiàn)1(﹣2,0),F(xiàn)2(2,0),則k1= , ,由此能證明k1k2=1.(3)PF1的方程為y=k1(x+2),將其代入橢圓方程得 ,由此利用韋達定理、弦長公式,結(jié)合已知條件能推導出 是定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{bn}是首項b1=1,b4=10的等差數(shù)列,設bn+2=3 an(n∈n*).
(1)求證:{an}是等比數(shù)列;
(2)記cn= ,求數(shù)列{cn}的前n項和Sn;
(3)記dn=(3n+1)Sn , 若對任意正整數(shù)n,不等式 + +…+ 恒成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為(
A.9
B.18
C.27
D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1,2,3,4,現(xiàn)從盒子中隨機抽取卡片.
(1)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于8的概率;
(2)若隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字3的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.

若商店一天購進該商品10件,求當天的利潤y單位:元關于當天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤單位:元的平均數(shù);

若該店一天購進10件該商品,記“當天的利潤在區(qū)間”為事件A,求PA的估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進行調(diào)查,統(tǒng)計出售價x元和銷售量y杯之間的一組數(shù)據(jù)如下表所示:

價格x

5

5.5

6.5

7

銷售量y

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量y對奶茶的價格x具有線性相關關系.
(Ⅰ)求銷售量y對奶茶的價格x的回歸直線方程;
(Ⅱ)欲使銷售量為13杯,則價格應定為多少?
注:在回歸直線y= 中, , = =146.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,an+1=2an+1 (I)求證數(shù)列{an+1}是等比數(shù)列;
(II)設cn=n(an+1),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為考察高中生的性別與是否喜歡數(shù)學課程之間的關系,在某城市的某校高中生中,從男生中隨機抽取了70人,從女生中隨機抽取了50人,男生中喜歡數(shù)學課程的占,女生中喜歡數(shù)學課程的占,得到如下列聯(lián)表.

喜歡數(shù)學課程

不喜歡數(shù)學課程

合計

男生

女生

合計

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)請將列聯(lián)表補充完整;試判斷能否有90%的把握認為喜歡數(shù)學課程與否與性別有關;

(2)從不喜歡數(shù)學課程的學生中采用分層抽樣的方法,隨機抽取6人,現(xiàn)從6人中隨機抽取2人,若所選2名學生中的女生人數(shù)為,求的分布列及數(shù)學期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求證:1﹣ + +…+ = + +…+ ,n∈N*

查看答案和解析>>

同步練習冊答案