【題目】已知數(shù)列{bn}是首項(xiàng)b1=1,b4=10的等差數(shù)列,設(shè)bn+2=3 an(n∈n*).
(1)求證:{an}是等比數(shù)列;
(2)記cn= ,求數(shù)列{cn}的前n項(xiàng)和Sn
(3)記dn=(3n+1)Sn , 若對(duì)任意正整數(shù)n,不等式 + +…+ 恒成立,求整數(shù)m的最大值.

【答案】
(1)證明:b1=1,b4=10,可得

公差d= =3,bn=1+3(n﹣1)=3n﹣2;

bn+2=3 an=3n,

則an=( n,

=

可得數(shù)列{an}是首項(xiàng)為 ,公比為 的等比數(shù)列


(2)解:cn= = = ),

則前n項(xiàng)和Sn= (1﹣ + +…+

= (1﹣ )=


(3)解:dn=(3n+1)Sn=(3n+1) =n.

則問(wèn)題轉(zhuǎn)化為對(duì)任意正整數(shù)n使

不等式 + +…+ 恒成立

設(shè)

則f(n+1)﹣f(n)=[ + +…+ ]﹣( + +…+

= + = >0

所以f(n+1)>f(n),故f(n)的最小值是f(1)= ,

恒成立,即m<12,

知整數(shù)m可取最大值為11


【解析】(1)運(yùn)用等差數(shù)列的通項(xiàng)公式,可得公差d=3,進(jìn)而得到bn=3n﹣2,再由對(duì)數(shù)的運(yùn)算性質(zhì)和等比數(shù)列的定義,即可得證;(2)求得cn= = = ),再由數(shù)列的求和方法:裂項(xiàng)相消求和即可得到所求和;(3)求得dn=(3n+1)Sn=(3n+1) =n.設(shè) ,判斷為單調(diào)遞增,求得最小值f(1),再由恒成立思想可得m的范圍,進(jìn)而得到最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,
(Ⅰ) 證明f(x)在[1,+∞)上是增函數(shù);
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)M(x,y)到直線lx=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn).若APB的中點(diǎn),求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正實(shí)數(shù)a,b滿(mǎn)足a+b=1,則(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2﹣6x﹣4y+4=0,點(diǎn)P(6,0).
(1)求過(guò)點(diǎn)P且與圓C相切的直線方程l;
(2)若圓M與圓C外切,且與x軸切于點(diǎn)P,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,S是B1D1的中點(diǎn),E,F(xiàn),G分別是BC,CD和SC的中點(diǎn).求證:

(1)直線EG∥平面BDD1B1
(2)平面EFG∥平面BDD1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象,則下面判斷正確的是(

A.在區(qū)間(﹣2,1)上f(x)是增函數(shù)
B.在(1,3)上f(x)是減函數(shù)
C.在(4,5)上f(x)是增函數(shù)
D.當(dāng)x=4時(shí),f(x)取極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓E經(jīng)過(guò)點(diǎn)A(2,3),對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)F1 , F2在x軸上,離心率e=

(1)求橢圓E的方程;
(2)求∠F1AF2的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 (a>b>0)的離心率為 ,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1 , F2為頂點(diǎn)的三角形的周長(zhǎng)為 .一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2 , 證明k1k2=1;
(3)探究 是否是個(gè)定值,若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案